Skip to main content
Log in

The variety of reductions for a reductive symmetric pair

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We define and study the variety of reductions for a complex reductive symmetric pair (G, θ), which is the natural compactification of the set of its Cartan subspaces. These varieties generalize the varieties of reductions for the Severi varieties studied by Iliev and Manivel, which are Fano varieties.

We develop a theoretical basis to the study of these varieties of reductions, and relate their geometry to some problems in representation theory. A very useful result is the rigidity of semisimple elements in deformations of algebraic subalgebras of Lie algebras. We use it to show that the closure of a decomposition class is a union of decomposition classes.

We apply this theory to the study of other varieties of reductions in a companion paper, which yields two new Fano varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Araki, On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ. 13 (1962), 1–34.

    MathSciNet  Google Scholar 

  2. W. Borho, H. Kraft, Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen, Comment. Math. Helv. 54 (1979), no. 1, 61–104.

    Article  MATH  MathSciNet  Google Scholar 

  3. N. Bourbaki, Groupes et Algèbres de Lie, Chaps. 4, 5 et 6, Masson, Paris, 1981.

  4. A. Broer, Lectures on decomposition classes, in: Representation Theories and Algebraic Geometry (Montreal, PQ, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 514, Kluwer Acad., Dordrecht, 1998, pp. 39–83.

  5. O. Debarre, Higher-Dimensional Algebraic Geometry, Universitext, Springer-Verlag, New York, 2001.

    MATH  Google Scholar 

  6. M. Furushima, N. Nakayama, A new construction of a compactification of C 3, Tohoku Math. J. (2) 41 (1989), no. 4, 543–560.

    Article  MathSciNet  Google Scholar 

  7. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York, 1977. Russian transl.: Р. Хартсхорн, Алгебрацческая геомеmрця, Мир, М. (1981).

  8. A. G. Helminck, Algebraic groups with a commuting pair of involutions and semisimple symmetric spaces. Adv. in Math. 71 (1988), no. 1, 21–91.

    Article  MATH  MathSciNet  Google Scholar 

  9. F. Hirzebruch, Some problems on differentiable and complex manifolds, Ann. of Math. (2) 60 (1954), 213–236.

    Article  MathSciNet  Google Scholar 

  10. A. Iliev, A. L. Manivel, Severi varieties and their varieties of reductions, J. Reine Angew. Math. 585 (2005), 93–139.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Iliev, A. L. Manivel, Varieties of reductions for \( \mathfrak{g}{\mathfrak{l}_n} \), in: Projective Varieties with Unexpected Properties, Walter de Gruyter, Berlin, 2005, pp. 287–316.

  12. B. Kostant, S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753–809.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Le Barbier Grünewald, Some rank two varieties of reductions, Unpublished manuscript.

  14. А. И. Мальцев, Коммуmаmцвные nодалгебры nолуnросmых алгебр Лц, Изв. АН СССР, сер. мат. 9 (1945), 291–300. Engl. transl.: A. I. Malcev, Commutative subalgebras of semi-simple Lie algebras, Amer. Math. Soc. Translation 1951 (1951), no. 40, 15 pp.

  15. S. Mukai, Fano 3-folds, in: Complex Projective Geometry (Trieste, 1989/Bergen, 1989), London Math. Soc. Lecture Note Ser., Vol. 179, Cambridge University Press, Cambridge, 1992, pp. 255–263.

  16. S. Müller-Stach, Compactifications of C 3 with reducible boundary divisor, Math. Ann. 286 (1990), nos. 1–3, 409–431.

    Article  MATH  MathSciNet  Google Scholar 

  17. K. Ranestad, O. Schreyer, The variety of polar simplices, Unpublished manuscript.

  18. T. A. Springer, Algebraic groups with involutions, in: Proceedings of the 1984 Vancouver Conference in Algebraic Geometry (Providence, RI, 1986), CMS Conf. Proc., Vol. 6, Amer. Math. Soc., Providence, RI, pp. 461–471.

  19. P. Tauvel, R. W. T. Yu, Lie Algebras and Algebraic Groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005.

    MATH  Google Scholar 

  20. E. Tjøtta, Rational curves on the space of determinantal nets of conics, arXiv:math/9802037.

  21. F. D. Veldkamp, The center of the universal enveloping algebra of a Lie algebra in characteristic p, Ann. Sci. École Norm. Sup. (4) 5 (1972), 217–240.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaël Le Barbier Grünewald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Barbier Grünewald, M. The variety of reductions for a reductive symmetric pair. Transformation Groups 16, 1–26 (2011). https://doi.org/10.1007/s00031-010-9108-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-010-9108-3

Keywords

Navigation