Skip to main content
Log in

On some exotic finite subgroups of E 8 and Springer’s regular elements of the Weyl group

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

A proof (by Serre and by Cohen, Griess and Lisser) verified, in the special case of E 8, a conjecture of mine, that the finite projective group L 2(61) embeds in \( {E_8}\left( \mathbb{C} \right) \). Subsequently, Griess and Ryba have shown (using computers) that L 2(49) and, in addition, (established by Serre without computers) L 2(41) also embed in \( {E_8}\left( \mathbb{C} \right) \). That is, if K = 30, 24, 20 and kK then L 2(2k + 1) embeds in \( {E_8}\left( \mathbb{C} \right) \). In this paper we show that the “Borel” subgroup B(k) of L 2(2k + 1), kK, has a uniform construction. The theorem uses a result of T. Springer on the existence in \( {E_8}\left( \mathbb{C} \right) \) of three regular elements of the Weyl group, having orders kK, and associated to the regular, subregular and subsubregular nilpotent elements. Springer’s result generalizes (in the E 8 case) a 1959 general result of mine relating the principal nilpotent element with the Coxeter element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Cohen, R. L. Griess, B. Lisser, The group L(2, 61) embeds in a Lie group of type E 8, Comm. Algebra 21 (1993), 1889–1907.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Griess, A. Ryba, Embeddings of PSL(2, 41) and PSL(2, 49), in \( {E_8}\left( \mathbb{C} \right) \), J. Symbolic Comput. 11 (1999), 1–17.

    Google Scholar 

  3. D. Gorenstein, Finite Groups, Harper Series in Modern Mathematics, Harper and Row, London, 1968.

    MATH  Google Scholar 

  4. V. Kac, Simple Lie groups and the Legendre symbol, in: Algebra, Carbondale 1980, Proc. Conf., Southern Illinois University, Carbondale, IL, 1980, Lecture Notes in Mathematics, Vol. 848, Springer-Verlag, Berlin, 1981, pp. 110–123.

    Google Scholar 

  5. D. Kazhdan, G. Lusztig, Fixed point varieties on affine flag manifolds, Israel J. Math. 62 (1988), 129–168.

    Article  MATH  MathSciNet  Google Scholar 

  6. B. Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973–1032.

    Article  MATH  MathSciNet  Google Scholar 

  7. J.-P. Serre, Exemples de plongement des groupes \( {\text{PS}}{{\text{L}}_2}\left( {{\mathbb{F}_p}} \right) \) dans des groupes de Lie simple, Invent. Math. 124 (1996), 525–562.

    Article  MATH  MathSciNet  Google Scholar 

  8. J.-P. Serre, arXiv:math/0305257v1 [math GR], 18 May 2003.

  9. T. Springer, Regular elements of finite reflection groups, Invent. Math. 25 (1974), 159–198.

    Article  MATH  MathSciNet  Google Scholar 

  10. H.-C. Wang, S. Pasiencier, Commutators in a semisimple Lie group, Proc. Amer. Math. Soc. 13 (1962), 907–913.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertram Kostant.

Additional information

Dedicated to Vladimir Morozov on the 100th anniversary of his birth

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostant, B. On some exotic finite subgroups of E 8 and Springer’s regular elements of the Weyl group. Transformation Groups 15, 909–919 (2010). https://doi.org/10.1007/s00031-010-9099-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-010-9099-0

Keywords

Navigation