Skip to main content
Log in

Normal subgroup generated by a plane polynomial automorphism

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We study the normal subgroup 〈f N generated by an element f ≠ id in the group G of complex plane polynomial automorphisms having Jacobian determinant 1. On the one hand, if f has length at most 8 relative to the classical amalgamated product structure of G, we prove that 〈f N = G. On the other hand, if f is a sufficiently generic element of even length at least 14, we prove that 〈f N G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Anick, Limits of tame automorphisms of k[x 1,…,x N ], J. Algebra 82 (1983), no. 2, 459–468.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Blanc, Groupes de Cremona, connexité et simplicité, Ann. Sci. École Norm. Sup. (2010), to appear.

  3. D. Cerveau, J. Deserti, Transformations birationnelles de petit degré, arXiv: 0811.2325 (2008).

  4. В. И. Данилов, Неnросmоmа груnnы унимодулярных авmоморфизмов аффинной nлоскосmи, Мат. Заметки 15 (1974), 289–293. Engl. transl.: V. I. Danilov, Nonsimplicity of the group of unimodular automorphisms of the affine plane, Math. Notes 15 (1974), 165–167.

  5. S. Friedland, J. Milnor, Dynamical properties of plane polynomial automorphisms, Ergodic Theory Dynam. Systems 9 (1989), no. 1, 67–99.

    Article  MathSciNet  MATH  Google Scholar 

  6. J.-P. Furter, Jet groups, J. Algebra 315 (2007), no. 2, 720–737.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. H. Gizatullin, The decomposition, inertia and ramification groups in birational geometry, in: Algebraic Geometry and its Applications (Yaroslavl’, 1992), Aspects of Mathematics, E25, Vieweg, Braunschweig, 1994, pp. 39–45.

  8. В. А. Исковских, Доказательство теоремы о соотношениях в двумерной груnnе Кремоны, УМН 40 (1985), no. 5(245), 255–256. Engl. transl.: V. A. Iskovskikh, Proof of a theorem on relations in the two-dimensional Cremona group, Russ. Math. Surv. 40 (1985), no. 5, 231–232.

  9. H. W. E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161–174.

    MathSciNet  Google Scholar 

  10. T. Kambayashi, Pro-affine algebras, ind-affine groups and the Jacobian problem, J. Algebra 185 (1996), no. 2, 481–501.

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Kambayashi, Some basic results on pro-affine algebras and ind-affine schemes, Osaka J. Math. 40 (2003), no. 3, 621–638.

    MathSciNet  MATH  Google Scholar 

  12. S. Lamy, L'alternative de Tits pour \({\rm Aut} [\mathbb{C}^{2}]\), J. Algebra 239 (2001), no. 2, 413–437.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Lamy, Une preuve géométrique du théorème de Jung, Enseign. Math. (2) 48 (2002), nos. 3–4, 291–315.

    MathSciNet  MATH  Google Scholar 

  14. R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1977 edition. Russian transl.: Р. Линдон, П. Шупп, Комбинаторная теория груnn, Мир, М. 1980.

  15. R. C. Lyndon, On Dehn's algorithm, Math. Ann. 166 (1966), 208–228.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Maubach, Polynomial automorphisms over finite fields, Serdica Math. J. 27 (2001), no. 4, 343–350.

    MathSciNet  MATH  Google Scholar 

  17. M. Nagata, On automorphism group of k[x, y], Department of Mathematics, Kyoto University, Lectures in Mathematics, No. 5, Kinokuniya Book-Store, Tokyo, 1972.

  18. J. J. Rotman, An Introduction to the Theory of Groups, 4th ed., Graduate Texts in Mathematics, Vol. 148, Springer-Verlag, New York, 1995.

  19. P. E. Schupp, Small cancellation theory over free products with amalgamation, Math. Ann. 193 (1971), 255–264.

    Article  MathSciNet  Google Scholar 

  20. J.-P. Serre, Arbres, Amalgames, SL2, Société Mathématique de France, Paris, 1977. Avec un sommaire anglais. Rédigé avec la collaboration de Hyman Bass, Astérisque, No. 46.

  21. I. R. Shafarevich, On some infinite-dimensional groups, Rend. Mat. Appl. (5) 25 (1966), nos. 1–2, 208–212.

    MathSciNet  Google Scholar 

  22. И. Р. Шафаревич, О некоторых бесконетерных груnnах, II, Изв. АН ССР, сер. мат. 45 (1981), no. 1, 214–226, 240. Engl. transl.: I. R. Shafarevich, On some infinite-dimensional groups, II, Math. USSR, Izv. 18 (1982), 185–194.

  23. W. van der Kulk, On polynomial rings in two variables, Nieuw Arch. Wisk. (3) 1 (1953), 33–41.

    MATH  Google Scholar 

  24. E. R. Van Kampen, On the connection between the fundamental groups of some related spaces, Amer. J. Math. 55 (1933), 261–267.

    Google Scholar 

  25. C. M. Weinbaum, Visualizing the word problem, with an application to sixth groups, Pacific J. Math. 16 (1966), 557–578.

    MathSciNet  MATH  Google Scholar 

  26. D. Wright, Abelian subgroups of Aut k (k[X, Y]) and applications to actions on the affine plane, Illinois J. Math. 23 (1979), no. 4, 579–634.

    MathSciNet  MATH  Google Scholar 

  27. D. Wright, Two-dimensional Cremona groups acting on simplicial complexes, Trans. Amer. Math. Soc. 331 (1992), no. 1, 281–300.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Furter.

Additional information

On leave from the Institut Camille Jordan, Université Lyon 1, France.

The second author was partially supported by an IEF Marie Curie Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furter, JP., Lamy, S. Normal subgroup generated by a plane polynomial automorphism. Transformation Groups 15, 577–610 (2010). https://doi.org/10.1007/s00031-010-9095-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-010-9095-4

Keywords

Navigation