Abstract
Let \(\mathfrak{g}\) be a finite-dimensional complex reductive Lie algebra and S(\(\mathfrak{g}\)) its symmetric algebra. The nilpotent bicone of \(\mathfrak{g}\) is the subset of elements (x, y) of \(\mathfrak{g} \times \mathfrak{g}\) whose subspace generated by x and y is contained in the nilpotent cone. The nilpotent bicone is naturally endowed with a scheme structure, as nullvariety of the augmentation ideal of the subalgebra of \({\text{S}}{\left( \mathfrak{g} \right)} \otimes _{\mathbb{C}} {\text{S}}{\left( \mathfrak{g} \right)}\) generated by the 2-order polarizations of invariants of \({\text{S}}{\left( \mathfrak{g} \right)}\). The main result of this paper is that the nilpotent bicone is a complete intersection of dimension \(3{\left( {{\text{b}}_{\mathfrak{g}} - {\text{rk}}\,\mathfrak{g}} \right)}\), where \({\text{b}}_{\mathfrak{g}}\) and \({\text{rk}}\,\mathfrak{g}\) are the dimensions of Borel subalgebras and the rank of \(\mathfrak{g}\), respectively. This affirmatively answers a conjecture of Kraft and Wallach concerning the nullcone [KrW2]. In addition, we introduce and study in this paper the characteristic submodule of \(\mathfrak{g}\). The properties of the nilpotent bicone and the characteristic submodule are known to be very important for the understanding of the commuting variety and its ideal of definition. The main difficulty encountered for this work is that the nilpotent bicone is not reduced. To deal with this problem, we introduce an auxiliary reduced variety, the principal bicone. The nilpotent bicone, as well as the principal bicone, are linked to jet schemes. We study their dimensions using arguments from motivic integration. Namely, we follow methods developed by Mustaţǎ in [Mu]. Finally, we give applications of our results to invariant theory.
This is a preview of subscription content, access via your institution.
References
V. V. Batyrev, Stringy Hodge numbers of varieties with Gorenstein canonical singularities, in: Integrable Systems and Algebraic Geometry (Kobe/Kyoto), World Scientific, River Edge, NJ, 1998, pp. 1–32.
A. V. Bolsinov, Commutative families of functions related to consistent Poisson brackets, Acta Appl. Math. 24 (1991), 253–274.
N. Bourbaki, Lie Groups and Lie Algebras, Chaps. 4–6, Translated from the 1968 French original by Andrew Pressley, Springer-Verlag, Berlin, 2002.
W. Bruns, J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, Vol. 39, Cambridge University Press, Cambridge, 1996.
J.-Y. Charbonnel, Complexe canonique de deuxième espèce, variété commutante et bicône nilpotent d'une algèbre de Lie réductive, arXiv:math.RT/0509272.
A. Craw, An introduction to motivic integration, in: Strings and Geometry, Clay Math. Proc., Vol. 3, Amer. Math. Soc., Providence, RI, 2004, pp. 203–225.
J. Denef, F. Loeser, Motivic Igusa zeta function, J. Algebraic Geom. 7 (1998), no. 3, 505–537.
J. Denef, F. Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999), 201–232.
D. Deturck, H. Goldschmidt, J. Talvacchia, Connections with prescribed curvature and Yang-Mills currents: The semi-simple case, Ann. Sci. ’Ecole Norm. Sup. 24 (1991), 57–112.
J. Dixmier, Champs de vecteurs adjoints sur les groupes et algèbres de Lie semisimples, J. Reine Angew. Math. 309 (1979), 183–190.
R. Elkik, Singularités rationnelles et déformations, Invent. Math. 47 (1978), 139–147.
R. Elkik, Rationalité des singularités canoniques, Invent. Math. 64 (1981), 1–6.
H. Flenner, Rationale quasihomogene Singularitäten, Arch. Math. 36 (1981), 35–44
W. L. Gan, V. Ginzburg, Almost-commuting variety, \(\mathcal{D}\)-modules, and Cherednik algebras, IMRP, Int. Math. Res. Pap. (2006), no. 2, 1–54.
R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Vol. 52, Springer-Verlag, Berlin, 1977.
W. H. Hesselink, Cohomology and the resolution of nilpotent variety, Math. Ann. 223 (1976), 249–252.
H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero: I, II, Ann. of Math. 79 (1964), 109–326.
M. Kontsevich, Motivic integration, Lecture at Orsay, 1995.
B. Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie Group, Amer. J. Math. 81 (1959), 973–1032.
B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327–404.
H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspekte der Mathematik, Vol. D1, Vieweg Verlag, Braunschweig/Wiesbaden, 1985, (2., durchgesehene Auage).
H. Kraft, N. Wallach, On the nullcone of representation of reductive groups, Pacific J. Math. 224 (2006), 119–140.
H. Kraft, N. Wallach, Polarizations and nullcone of representations of reductive groups, http://math.ucsd.edu/~nwallach/KWpolarnullcone.pdf, 2007.
T. Levasseur, J. T. Stafford, The kernel of an homomorphism of Harish-Chandra, Ann. Sci. École Norm. Sup. 29 (1996), 385–397.
E. Looijenga, Motivic measures, in: Séminaire Bourbaki, Astérisque 276 (1999/2000), 267–297.
M. Losik, P. W. Michor, V. L. Popov, On polarizations in invariant theory, J. Algebra 301 (2006), 406–424.
H. Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, Vol. 8, Cambridge University Press, Cambridge, 1986.
M. Mustaţǎ, Jet schemes of locally complete intersection canonical singularities, with an appendix by D. Eisenbud and E. Frenkel, Invent. Math. 145 (2001), 397–424.
D. I. Panyushev, O. Yakimova, The argument shift method and maximal commutative subalgebras of Poisson algebras, Math. Res. Lett. 15 (2008), no. 2, 239–249.
В. Л. Попов, Конус нуль-форм Гильберта, Труды Математического ин-таим. В. А. Стеклова 241 (2003), 192–209. English transl.: V. L. Popov, The cone of Hilbert nullforms, Proc. Steklov Inst. Math. 241 (2003), 177–194.
L. Pukanszky, Leçons sur les Représentations des Groupes, Monographie de la Société Mathématique de France, Vol. 2, Dunod, Paris, 1967.
R. W. Richardson, Commuting varieties of semisimple Lie algebras and algebraic groups, Compos. Math. 38 (1979), 311–322.
R. W. Richardson, Normality of G-stable subvariaties of a semisimple Lie algebra, in: Algebraic Groups, Proc. Symp., Utrecht/Neth. 1986, Lecture Notes in Mathematics, Vol. 1271, Springer-Verlag, Berlin, 1987, pp. 243–264.
R. W. Richardson, Derivatives of invariant polynomials on a semisimple Lie algebra, in: Microconference on Harmonic Analysis and Operator Algebras, Proceedings of the Centre of Mathematical Analysis, Australian National University 15, Australian National University, Canberra, 1987, pp. 228–241.
R. W. Richardson, Conjugacy classes of n-tuples in Lie algebras and algebraic groups, Duke Math. J. 57 (1988), no. 1, 1–35.
R. W. Richardson, Irreducible components of the nullcone, in: Invariant Theory (Denton, TX, 1986), Contemporary Mathematics, Vol. 88, American Mathematical Society, Providence, RI, 1989, pp. 409–434.
P. Tauvel, R. W. T. Yu, Lie Algebras and Algebraic groups, Monographs in Mathematics, Springer, Berlin, 2005.
F. D. Veldkamp, The centre of the universal enveloping algebra of a Lie algebra in characteristic p, Ann. Sci. École Norm. Sup. 5 (1972), 217–240.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Charbonnel, JY., Moreau, A. Nilpotent Bicone and Characteristic Submodule of a Reductive Lie Algebra. Transformation Groups 14, 319–360 (2009). https://doi.org/10.1007/s00031-009-9048-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00031-009-9048-y
Keywords
- Irreducible Component
- Complete Intersection
- Maximal Dimension
- Smooth Point
- Nonempty Intersection