Skip to main content
Log in

Asymptotic behaviour of blow-up solutions of the fast diffusion equation

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

Let \(n\ge 3\), \(0<m<\frac{n-2}{n}\), \(i_0\in {{\mathbb {Z}}}^+\), \(\Omega \subset {\mathbb {R}}^n\) be a smooth bounded domain, \(a_1,a_2,\ldots ,a_{i_0}\in \Omega \), \({\widehat{\Omega }}=\Omega \setminus \{a_1,a_2,\ldots ,a_{i_0}\}\), \(0\le f\in L^{\infty }(\partial \Omega )\) and \(0\le u_0\in L_{loc}^p({\widehat{\Omega }})\) for some constant \(p>\frac{n(1-m)}{2}\) which satisfies \(\lambda _i|x-a_i|^{-\gamma _i}\le u_0(x)\le \lambda _i'|x-a_i|^{-\gamma _i'}\,\,\forall 0<|x-a_i|<\delta \), \(i=1,\ldots , i_0\) where \(\delta >0\), \(\lambda _i'\ge \lambda _i>0\) and \(\frac{2}{1-m}<\gamma _i\le \gamma _i'<\frac{n-2}{m}\) \(\forall i=1,2,\ldots , i_0\) are constants. We will prove the asymptotic behaviour of the finite blow-up points solution u of \(u_t=\Delta u^m\) in \({\widehat{\Omega }}\times (0,\infty )\), \(u(a_i,t)=\infty \,\,\forall i=1,\ldots ,i_0, t>0\), \(u(x,0)=u_0(x)\) in \({\widehat{\Omega }}\) and \(u=f\) on \(\partial \Omega \times (0,\infty )\), as \(t\rightarrow \infty \). We will construct finite blow-up points solution in bounded cylindrical domain with appropriate lateral boundary value such that the finite blow-up points solution oscillates between two given harmonic functions as \(t\rightarrow \infty \). We will also prove the existence of the minimal solution of \(u_t=\Delta u^m\) in \({\widehat{\Omega }}\times (0,\infty )\), \(u(x,0)=u_0(x)\) in \({\widehat{\Omega }}\), \(u(a_i,t)=\infty \quad \forall t>0, i=1,2\ldots ,i_0\) and \(u=\infty \) on \(\partial {\Omega }\times (0,\infty )\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akagi, G.: Stability of non-isolated asymptotic profiles for fast diffusion. Commun. Math. Phys. 345, 77–100 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akagi, G.: Rates of convergence to non-degenerate asymptotic profiles for fast diffusion via energy methods, arXiv:2109.03960

  3. Aronson, D.G.: The Porous Medium Equation, CIME Lectures in Some problems in Nonlinear Diffusion. Lecture Notes in Mathematics, vol. 1224. Springer, New York (1986)

    Google Scholar 

  4. Aronson, D.G., Peletier, L.A.: Large time behaviour of solutions of the porous medium equation in bounded domains. J. Differ. Equ. 39, 378–412 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berryman, J.G., Holland, C.J.: Stability of the separable solution for fast diffusion. Arch. Rat. Mech. Anal. 74, 379–388 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blanchet, A., Bonforte, M., Dolbeault, J., Grillo, G., Vazquez, J.L.: Asymptotics of the fast diffusion equation via entropy estimates. Arch. Rat. Mech. Anal. 191, 347–385 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonforte, M., Figalli, A.: Sharp extinction rates for fast diffusion equations on generic bounded domains. Comm. Pure Appl. Math. 74, 744–789 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonfonte, M., Grillo, G., Vazquez, J.L.: Special fast diffusion with slow asymptotics entropy method and flow on a Riemann manifold. Arch. Rat. Mech. Anal. 196, 631–680 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonfonte, M., Grillo, G., Vazquez, J.L.: Behaviour near extinction for the fast diffusion equation on bounded domains. J. Math. Pures Appl. 97, 1–38 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonfonte, M., Vazquez, J.L.: Positivity, local smoothing, and Harnack inequalities for very fast diffusion equations. Adv. Math. 223, 529–578 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bonfonte, M., Vazquez, J.L.: Global positivity estimates and Harnack inequalities for the fast diffusion equation. J. Funct. Anal. 240, 399–428 (2006)

    Article  MathSciNet  Google Scholar 

  12. Carrillo, J.A., Vazquez, J.L.: Fine asymptotics for fast diffusion equations. Comm. Part. Differ. Equ. 28(5 & 6), 1023–1056 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Choi, B., Lee, K.: Multi-D fast diffusion equation via diffusive scaling of generalized Carleman kinetic equation, arxiv:1510.08997

  14. Choi, B., Mccann, R.J., Seis, C.: Asymptotics near extinction for nonlinear fast diffusion on a bounded domain, arxiv:2202.02769v2

  15. Dahlberg, B.E.J., Kenig, C.E.: Nonnegative solutions of the initial -Dirichlet probem for generalized porous medium equations in cylinders. J. Amer. Math. Soc. 1(2), 401–412 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Daskalopoulos, P., Kenig, C.E.: Degenerate Diffusion-Initial Value Problems and Local Regularity Theory, Tracts in Mathematics 1. European Mathematical Society (2007)

    Book  MATH  Google Scholar 

  17. Daskalopoulos, P., Sesum, N.: On the extinction profile of solutions to fast diffusion. J. Reine Angew. Math. 622, 95–119 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Daskalopoulos, P., Sesum, N.: The classification of locally conformally flat Yamabe solitons. Adv. Math. 240, 346–369 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dibenedetto, E., Kwong, Y.C.: Harnack estimates and extinction profile for weak solutions of certain singular parabolic equations. Trans. Amer. Math. Soc. 330(2), 783–811 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feireisl, E., Simondon, F.: Convergence for degenerate parabolic equations. J. Differ. Equ. 152, 439–466 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Friedman, A., Kamin, S.: The Asymptotic behavior of gas in an n-dimensional porous medium. Trans. Amer. Math. Soc. 262(2), 551–563 (1980)

    MathSciNet  MATH  Google Scholar 

  22. Fila, M., Macková, P., Takahashi, J., Yanagida, E.: Anisotopic and isotropic persistent singularities of solutions of the the fast diffusion equation, arxiv:2111.08068

  23. Grillo, G., Muratori, M., Punzo, F.: Fast diffusion on noncompact manifolds: well-posedness theory and connections with semilinear elliptic equations. Trans. Amer. Math. Soc. 374(9), 6367–6396 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Golse, F., Salvarani, F.: The nonlinear diffusion limit for generalized Carleman models: the initial-boundary value problem. Nonlinearity 20, 927–942 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Herrero, M.A., Pierre, M.: The Cauchy problem for \(u_t=\Delta u^m\) when \(0<m<1\). Trans. A. M. S. 291(1), 145–158 (1985)

    MATH  Google Scholar 

  26. Hsu, S.Y.: Existence and asymptotic behaviour of solutions of the very fast diffusion equation. Manuscript. Math. 140(3–4), 441–460 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hui, K.M.: Singular limit of solutions of the very fast diffusion equation, nonlinear. Analysis 68, 1120–1147 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Hui, K.M.: Uniqueness and time oscillating behaviour of finite points blow-up solutions of the fast diffusion equation. Proc. R. Soc. Edinb. Sect. A: Math. 150(6), 2849–2870 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hui, K.M., Kim, S.: Existence of Neumann and singular solutions of the fast diffusion equation. Discrete Contin. Dyn. Syst. Ser.-A 35(10), 4859–4887 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hui, K.M., Kim, S.: Existence and large time behaviour of finite points blow-up solutions of the fast diffusion equation. Calc. Var. Part. Diff. Equ. 57(5), 1–39 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Jin, T., Xiong, J.: Singular extinction profiles of solutions to some fast diffusion equations. J. Funct. Anal. 283(7), 109595 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kwong, Y.C.: Boundary behavior of the fast diffusion equation. Trans. Amer. Math. Soc. 322(1), 263–283 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ladyzenskaya, O.A., Solonnikov, V.A., Uraltceva, N.N.: Linear and quasilinear equations of parabolic type, Transl. Math. Mono. vol. 23, Amer. Math. Soc., Providence, R.I., U.S.A., (1968)

  34. Luo, T., Zeng, H.: Global existence and smooth solutions and convergence to Barenblatt solutions for the physical vacuum free boundary problem of compressible Euler equations with damping. Commun. Pure Appl. Math. 69(7), 1354–1396 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. del Pino, M., Dolbeault, J.: Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81, 847–875 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. del Pino, M., Sáez, M.: On the extinction profile for solutions of \(u_t=\Delta u^{(N-2)/(N+2)}\). Indiana Univ. Math. J. 50(1), 611–628 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sacks, P.E.: Continuity of solutions of a singular parabolic equation. Nonlinear Anal. TMA 7(4), 378–409 (1983)

    Article  MathSciNet  Google Scholar 

  38. Takahashi, J., Yamamoto, H.: Infinite-time incompleteness of noncompact Yamabe flow, arxiv:2111.03222v1

  39. Vazquez, J.L.: Asymptotic behaviour for the porous medium equation posed in the whole space. J. Evol. Equ. 3, 67–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vazquez, J.L.: The Dirichlet problem for the porous medium equation in bounded domains. Asymptotic behavior. Monatsh. Math. 142, 81–111 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Vazquez, J.L.: Smoothing and Decay Estimates for Nonlinear Diffusion Equations, Oxford Lecture Series in Mathematics and its Applications 33. Oxford University Press, Oxford (2006)

    Google Scholar 

  42. Vazquez, J.L.: The Porous Medium Equation. Mathematical Theory. Oxford Mathematical Monographs, p. xxii+624. The Clarendon Press, Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  43. Vazquez, J.L., Winkler, M.: The evolution of singularities in fast diffusion equations: infinite-time blow-down. SIAM J. Math. Anal. 43(4), 1499–1535 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Vazquez, J.L., Winkler, M.: Highly time-oscillating solutions for very fast diffusion equations. J. Evol. Equ. 11(3), 725–742 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The author does not receive any funding from any funding agent for this research

Author information

Authors and Affiliations

Authors

Contributions

S-YH wrote the whole manuscript text.

Corresponding author

Correspondence to Shu-Yu Hsu.

Ethics declarations

Conflict of interest

The author declared that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, SY. Asymptotic behaviour of blow-up solutions of the fast diffusion equation. Nonlinear Differ. Equ. Appl. 30, 71 (2023). https://doi.org/10.1007/s00030-023-00883-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-023-00883-7

Keywords

Mathematics Subject Classification

Navigation