Skip to main content
Log in

Bifurcations from a normally degenerate cycle in forced planar differential equations

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

Bifurcations from a resonant period manifold in forced systems are intensively studied in the literature, usually assuming that the period manifold is normally non-degenerate. This paper deals with smooth systems in dimension two, considering bifurcations from a normally degenerate cycle. The complexity of this situation is characterized in terms of the Poincaré return map and return-time map near the cycle of the unperturbed system. A geometric setting is defined to analyze the Poincaré translation map of the perturbed system. Our main result presents the degenerate situation in deep, clear and essential terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buică, A., Françoise, J.-P., Llibre, J.: Periodic solutions of nonlinear periodic differential systems with a small parameter Commun. Pure Appl. Anal. 6, 103–111 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Buică, A., Gasull, A.: Many periodic solutions for a second order cubic periodic differential equation Monatsh. Mathematics 193, 555–572 (2020)

    MATH  Google Scholar 

  3. Buică, A., Giné, J., Llibre, J.: Periodic solutions for nonlinear differential systems: the second order bifurcation function Topol. Meth. Nonlinear Anal. 43, 403–419 (2014)

    MATH  Google Scholar 

  4. Buică, A., Llibre, J., Makarenkov, O.: Bifurcations from nondegenerate families of periodic solutions in Lipschitz systems. J. Differ. Equ. 252, 3899–3919 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chicone, C.: Bifurcation of nonlinear oscillations and frequency entrainment near resonance SIAM. J. Math. Anal. 23, 1577–1608 (1992)

    MathSciNet  MATH  Google Scholar 

  6. Chicone, C., Liu, W.: Asymptotic phase revisited. J. Differ. Equ. 204, 227–246 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chillingworth, D.R.J., Sbano, L.: Bifurcation from a normally degenerate manifold Proc. Lond. Math. Soc. 101, 137–178 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dincă, G., Mawhin, J.: Brouwer degree. The Core of Nonlinear Analysis, Birkhäuser (2021)

  9. Dumortier, F.: Asymptotic phase and invariant foliations near periodic orbits Proc. Am. Math. Soc. 134, 2989–2996 (2006)

    Article  MATH  Google Scholar 

  10. Fonda, A., Sabatini, M., Zanolin, F.: Periodic solutions of perturbed Hamiltonian systems in the plane by the use of the Poincaré-Birkhoff Theorem Topol. Meth. Nonlinear Anal. 40, 29–52 (2012)

    MATH  Google Scholar 

  11. Guckenheimer, J., Holmes, Ph.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer (1983)

  12. Hale, J.K., Táboas, P.Z.: Bifurcation near degenerate families. Appl. Anal. 11, 21–37 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hausrath, A.R., Manasevich, R.F.: The characterization of degenerate and non-degenerate systems Rocky Mt. J. Math. 16, 203–214 (1986)

    MATH  Google Scholar 

  14. Henrad, M., Zanolin, F.: Bifurcation from a periodic orbit in perturbed planar Hamiltonian systems. J. Math. Anal. Appl. 277, 79–103 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kamenskii, M., Makarenkov, O., Nistri, P.: An alternative approach to study bifurcation from a limit cycle in periodically perturbed autonomous systems. J. Dyn. Diff. Equ. 23, 425–435 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kulpa, W.: The Poincaré-Miranda Theorem. Am. Math. Monthly 104, 545–550 (1997)

    MATH  Google Scholar 

  17. Llibre, J., Novaes, D.D., Teixeira, M.A.: Higher order averaging theory for finding periodic solutions via Brouwer degree. Nonlinearity 27, 563–583 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Loud, W.S.: Periodic solutions of a perturbed autonomous system. Ann. Math. 70, 490–529 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hartman, Ph.: Ordinary Differential Equations. John Wiley & Sons, London (1964)

  20. Malkin, I.G.: On Poincaré’s theory of periodic solutions Akad. Nauk SSSR. Prikl. Mat. Meh. 13, 633–646 (1949). ((in Russian))

    MathSciNet  Google Scholar 

  21. Rouché, N., Mawhin, J.: Équations différentielles ordinaires, Tome 2: Stabilité et solutions périodiques. Masson et Cie, Paris (1973)

    MATH  Google Scholar 

  22. Rhouma, M., Chicone, C.: On the continuation of periodic orbits Meth. Appl. Anal. 7, 85–104 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS/CCCDI—UEFISCDI, project number PN-III-P1-1.1-TE-2019-1306, within PNCDI III. We are also grateful to the anonymous referees for their comments which helped to improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Buică.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buică, A. Bifurcations from a normally degenerate cycle in forced planar differential equations. Nonlinear Differ. Equ. Appl. 30, 63 (2023). https://doi.org/10.1007/s00030-023-00868-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-023-00868-6

Keywords

Mathematics Subject Classification

Navigation