Skip to main content
Log in

Global boundedness of the immune chemotaxis system with general kinetic functions

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In this paper, we study the following reaction-diffusion-advection system

$$\begin{aligned} \left\{ \begin{aligned}{}&u_t=D_{u}\Delta u- \chi \nabla \cdot ( u\nabla v) + f(u),&(x,t)\in \Omega \times (0,\infty ), \\&v_t=D_{v}\Delta v+s_{v}uw-\mu _{v}v,&(x,t)\in \Omega \times (0,\infty ), \\&w_t=D_{w}\Delta w+s_{w}-\lambda _{w}uw-\mu _{w}w,&(x,t)\in \Omega \times (0,\infty ), \end{aligned} \right. \end{aligned}$$

in a smoothly bounded domain \(\Omega \subset {\mathbb {R}}^{n}\), which describes a directed movement of immune cells toward chemokines during the immune process, where \(D_{u},D_{v},D_{w},s_{v},s_{w},\lambda _{w}\), \(\mu _{v},\mu _{w},\chi \) are positive parameters, and \(f\in C^{1}([0,\infty ))\) is a kinetic function. When \(n\ge 1\), if there exist positive constants \(\alpha \) and \(\theta _{0}\) such that \(\sup _{s\ge 0}\{f(s)\!+\!\alpha s\}<\infty \) and \(\lim _{s\rightarrow \infty }\inf \left\{ -\!\frac{f(s)}{s^{2}}\right\} =:\mu \in (\theta _{0},\infty ]\), then the solution of the system is global and uniformly bounded. In particular, when \(n=2\) and \(f(0)\ge 0\), the condition of f(u) could be improved as follows: if there exists \(\alpha >0\) such that \(\sup _{s\ge 0}\{f(s)+\alpha s\}<\infty \) and one of the conditions that \(\lim _{s\rightarrow \infty }\inf \left\{ -\frac{f(s)\ln s}{s^{2}}\right\} =:\mu \in (\sqrt{2}\frac{\chi s_{v}C_{w}}{D_{v}},\infty ]\) or \(\frac{2\sqrt{2}\chi s_{v}C_{GN}^{4}m_{1}C_{w}}{D_{v}}\le D_{u}\) holds, then the solution of the system is still global and uniformly bounded, where \(m_{1}\) is a positive constant given by below, \(C_{GN}>0\) is the Gagliardo-Nirenberg inequality’s constant and \(C_{w}\) represents the uniform upper bound of w. Moreover, when \(f\equiv 0\) and \(\frac{2\sqrt{2}\chi s_{v}C_{GN}^{4}m_{1}C_{w}}{D_{v}}\le D_{u}\), the global and uniform boundedness of solutions can also be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H.: Dynamic theory of quasilinear parabolic equations II. Reaction-diffusion systems. Differ. Integr. Equ. 3(1), 13–75 (1990)

    MathSciNet  MATH  Google Scholar 

  2. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Towards a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Mod. Meth. Appl. Sci. 25, 1663–1763 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Bellomo, N., Painter, K.J., Tao, Y., Winkler, M.: Occurrence vs. absence of taxis-driven instabilities in a May–Nowak model for virus infection. SIAM J. Appl. Math. 79(5), 1990–2010 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Bellomo, N., Tao, Y.: Stabilization in a chemotaxis model for virus infection. Discr. Contin. Dyn. Syst. Ser. S. 13, 105–117 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Biler, P., Hebisch, W., Nadzieja, T.: The Debye system: existence and large time behavior of solutions. Nonlin. Anal. 23, 1189–1209 (1994)

    MathSciNet  MATH  Google Scholar 

  6. Chaplain, M.A.J., Tello, J.I.: On the stability of homogeneous steady states of a chemotaxis system with logistic growth term. Appl. Math. Lett. 57, 1–6 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Devreotes, P., Janetopoulos, C.: Eukaryotic chemotaxis: distinctions between directional sensing and polarization. J. Biol. Chem. 278, 20445–20448 (2003)

    Google Scholar 

  8. Eftimie, R., Gillard, J., Cantrell, D.A.: Mathematical models for immunology: current state of the art and future research directions. Bull. Math. Biol. 78, 2091–2134 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Fishman, M.A., Perelson, A.S.: Modeling T cell-antigen presenting cell interactions. J. Theor. Biol. 160, 311–342 (1993)

    Google Scholar 

  10. Fuest, M.: Boundedness enforced by mildly saturated conversion in a chemotaxis–May–Nowak model for virus infection. J. Math. Anal. Appl. 472, 1729–1740 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Gajewski, H., Zacharias, K.: Global behavior of a reaction-diffusion system modelling chemotaxis. Math. Nachr. 195, 77–144 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Gereda, J.E., Leung, D.Y.M., Thatayatikom, A., Streib, J.E., Price, M.R.: Relation between house-dust endotoxin exposure, type 1 T-cell development, and allergen sensitisation in infants at high risk of asthma. The Lancet. 355, 1680–1683 (2000)

    Google Scholar 

  13. Groß, F., Fridolin, M., Behn, U.: Mathematical modeling of allergy and specific immunotherapy: Th1-Th2-Treg interactions. J. Theor. Biol. 269, 70–78 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Horstmann, D.: The nonsymmetric case of the Keller–Segel model in chemotaxis: some recent results. Nonlin. Differ. Equ. Appl. 8, 399–423 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Horstmann, D., Wang, G.: Blow-up in a chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 12, 159–177 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215(1), 52–107 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Ishida, S., Seki, K., Yokota, T.: Boundedness in quasilinear Keller–Segel systems of parabolic-parabolic type on non-convex bounded domains. J. Differ. Equ. 256, 2993–3010 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    MathSciNet  MATH  Google Scholar 

  19. Kowalczyk, R.: On the global existence of solutions to an aggregation model. J. Math. Anal. Appl. 343, 379–398 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Lai, X., Zou, X.: Repulsion effect on superinfecting virions by infected cells. Bull. Math. Biol. 76, 2806–2833 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Lee, S., Kim, S., Oh, Y., Hwang, H.J.: Mathematical modeling and its analysis for instability of the immune system induced by chemotaxis. J. Math. Biol. 75, 1101–1131 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Li, X.: Global existence and boundedness of a chemotaxis model with indirect production and general kinetic function. Z. Angew. Math. Phys. 71, 1–22 (2020)

    MathSciNet  Google Scholar 

  23. Mizoguchi, N., Souplet, P.: Nondegeneracy of blow-up points for the parabolic Keller-Segel system. Ann. Inst. H. Poincaré Anal. Non Linaire. 31, 851–875 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funk. Ekva. 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  25. Nirenberg, L.: An extended interpolation inequality. Ann. Scuola Norm-Sci. 20, 733–737 (1966)

    MathSciNet  MATH  Google Scholar 

  26. Osaki, K., Tsujikawa, T., Yagi, A., Mimura, M.: Exponential attracktor for a chemotaxis-growth system of equations. Nonlin. Anal. 51, 119–144 (2002)

    MATH  Google Scholar 

  27. Osaki, K., Yagi, A.: Finite dimensional attractors for one-dimensional Keller-Segel equations. Funkcial. Ekvac. 44, 441–469 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Osaki, K., Yagi, A.: Global existence for a chemotaxis-growth system in \(R^2\). Adv. Math. Sci. Appl. 12, 587–606 (2002)

    MathSciNet  MATH  Google Scholar 

  29. Pan, X., Wang, L., Hu, X.: Boundedness and stabilization of solutions to a chemotaxis May-Nowak model. Z. Angew. Math. Phys. 72, 1–16 (2021)

    MathSciNet  MATH  Google Scholar 

  30. Pigozzo, A.B., Macedo, G.C., Santos, R.W.D., Lobosco, M.: On the computational modeling of the innate immune system. Bio. Med. Central. 14, 1–20 (2013)

    Google Scholar 

  31. Stancevic, O., Angstmann, C.N., Murray, J.M., Henry, B.I.: Turing patterns from dynamics of early HIV infection. Bull. Math. Biol. 75, 774–795 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Su, B., Zhou, W., Dorman, K.S., Jones, D.E.: Mathematical modelling of immune response in tissues. Comput. Math. Methods Med. 10, 9–38 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Wang, W., Ma, W., Lai, X.: Repulsion effect on superinfecting virions by infected cells for virus infection dynamic model with absorption effect and chemotaxis. Nonlin. Anal. RWA. 33, 253–283 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Wang, W., Zhang, M., Zheng, S.: Positive effects of repulsion on boundedness in a fully parabolic attraction-repulsion chemotaxis system with logistic source. J. Differ. Equ. 264, 2011–2027 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248(12), 2889–2905 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Winkler, M.: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J. Math. Anal. Appl. 384, 261–272 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Winkler, M.: Boundedness in a chemotaxis-May-Nowak model for virus dynamics with mildly saturated chemotactic sensitivity. Acta Appl. Math. 163, 1–17 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Winkler, M.: Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening. J. Differ. Equ. 257, 1056–1077 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Wu, S.: Global boundedness of a diffusive prey-predator model with indirect prey-taxis and predator-taxis. J. Math. Anal. Appl. 507, 125820 (2022)

    MathSciNet  MATH  Google Scholar 

  43. Xiang, T.: Sub-logistic source can prevent blow-up in the 2D minimal Keller–Segel chemotaxis system. J. Math. Phys. 59, 081502 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Xiang, T.: Boundedness and global existence in the higher-dimensional parabolic-parabolic chemotaxis system with/without growth source. J. Differ. Equ. 258, 4275–4323 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Yoon, C., Kim, S., Hwang, H.J.: Global well-posedness and pattern formations of the immune system induced by chemotaxis. Math. Biosci. Eng. 17, 3426–3449 (2020)

    MathSciNet  MATH  Google Scholar 

  46. Zhelev, D.V., Alteraifi, A.M., Chodniewicz, D.: Controlled pseudopod extension of human neutrophils stimulated with different chemoattractants. Biophys. J. 87, 688–695 (2004)

    Google Scholar 

  47. Zheng, P., Mu, C., Hu, X.: Persistence property in a two-species chemotaxis system with two signals. J. Math. Phys. 58, 111501 (2017)

    MathSciNet  MATH  Google Scholar 

  48. Zheng, P., Mu, C., Mi, Y.: Global stability in a two-competing-species chemotaxis system with two chemicals. Diff. Integ. Equ. 31, 547–558 (2018)

    MathSciNet  MATH  Google Scholar 

  49. Zheng, P., Xing, J.: Boundedness and large-time behavior for a two-dimensional quasilinear chemotaxis-growth system with indirect signal consumption. Z. Angew. Math. Phys. 71(3), 71–98 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to deeply thank the editor and anonymous reviewers for their insightful and constructive comments. Pan Zheng thanks for the friendly hospitality of The Chinese University of Hong Kong during the postdoctoral research. The work is partially supported by National Natural Science Foundation of China (Grant Nos.: 11601053, 12271064), the Science and Technology Research Project of Chongqing Municipal Education Commission (Grant No. KJZDK202200602), Natural Science Foundation of Chongqing (Grant No. cstc2019jcyj-msxmX0082), China-South Africa Young Scientist Exchange Project in 2020, The Hong Kong Scholars Program (Grant Nos.: XJ2021042, 2021-005),Young Hundred Talents Program of CQUPT in 2022-2024 and Chongqing Postgraduate Research and Innovation Project in 2022 (Grant Nos: CYS22451).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, W., Zheng, P. Global boundedness of the immune chemotaxis system with general kinetic functions. Nonlinear Differ. Equ. Appl. 30, 29 (2023). https://doi.org/10.1007/s00030-023-00840-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-023-00840-4

Keywords

Mathematics Subject Classification

Navigation