Skip to main content
Log in

On the generalised Brézis–Nirenberg problem

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

For \( p \in (1,N)\) and a domain \(\Omega \) in \(\mathbb {R}^N\), we study the following quasi-linear problem involving the critical growth:

$$\begin{aligned} -\Delta _p u - \mu g|u|^{p-2}u = |u|^{p^{*}-2}u \ \text{ in } \mathcal {D}_p(\Omega ), \end{aligned}$$

where \(\Delta _p\) is the p-Laplace operator defined as \(\Delta _p(u) = \text {div}(|{\nabla u}|^{p-2} \nabla u),\) \(p^{*}= \frac{Np}{N-p}\) is the critical Sobolev exponent and \(\mathcal {D}_p(\Omega )\) is the Beppo-Levi space defined as the completion of \(\text {C}_c^{\infty }(\Omega )\) with respect to the norm \(\Vert u\Vert _{\mathcal {D}_p}:= \left[ \displaystyle \int _{\Omega } |\nabla u|^p \mathrm{d}x\right] ^ \frac{1}{p}.\) In this article, we provide various sufficient conditions on g and \(\Omega \) so that the above problem admits a positive solution for certain range of \(\mu \). As a consequence, for \(N \ge p^2\), if g is such that \(g^+ \ne 0\) and the map \(u \mapsto \displaystyle \int _{\Omega } |g||u|^p \mathrm{d}x\) is compact on \(\mathcal {D}_p(\Omega )\), we show that the problem under consideration has a positive solution for certain range of \(\mu \). Further, for \(\Omega =\mathbb {R}^N\), we give a necessary condition for the existence of positive solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis. A Hitchhiker’s Guide, 3rd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Allegretto, W.: Principal eigenvalues for indefinite-weight elliptic problems in \(\mathbb{R} ^n\). Proc. Am. Math. Soc. 116(3), 701–706 (1992)

    MATH  Google Scholar 

  3. Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122(2), 519–543 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Anoop, T.V.: On weighted eigenvalue problems and applications. Ph.D Thesis (2011)

  5. Anoop, T.V.: Weighted eigenvalue problems for the \(p\)-Laplacian with weights in weak Lebesgue spaces. Electron. J. Differ. Equ. 22, 64 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Anoop, T.V., Das, U.: The compactness and the concentration compactness via p-capacity. Annali di Matematica Pura ed Applicata (1923 -) 200(6), 2715–2740 (2021)

    MathSciNet  MATH  Google Scholar 

  7. Anoop, T.V., Drábek, P., Sasi, S.: Weighted quasilinear eigenvalue problems in exterior domains. Calc. Var. Partial Differ. Equ. 53(3–4), 961–975 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Anoop, T.V., Lucia, M., Ramaswamy, M.: Eigenvalue problems with weights in Lorentz spaces. Calc. Var. Partial Differ. Equ. 36(3), 355–376 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Badiale, M., Tarantello, G.: A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics. Arch. Ration. Mech. Anal. 163(4), 259–293 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983)

    MathSciNet  MATH  Google Scholar 

  11. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36(4), 437–477 (1983)

    MathSciNet  MATH  Google Scholar 

  12. Cao, D., Peng, S., Yan, S.: Infinitely many solutions for \(p\)-Laplacian equation involving critical Sobolev growth. J. Funct. Anal. 262(6), 2861–2902 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Capozzi, A., Fortunato, D., Palmieri, G.: An existence result for nonlinear elliptic problems involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire 2(6), 463–470 (1985)

    MathSciNet  MATH  Google Scholar 

  14. Cencelj, M., Repovš, D., Virk, V.: Multiple perturbations of a singular eigenvalue problem. Nonlinear Anal. 119, 37–45 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Chabrowski, J.: Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents. Calc. Var. Partial Differ. Equ. 3(4), 493–512 (1995)

    MathSciNet  MATH  Google Scholar 

  16. Chabrowski, J.: On multiple solutions for the nonhomogeneous \(p\)-Laplacian with a critical Sobolev exponent. Differ. Integr. Equ. 8(4), 705–716 (1995)

    MathSciNet  MATH  Google Scholar 

  17. Clapp, M.: A global compactness result for elliptic problems with critical nonlinearity on symmetric domains. In: Nonlinear equations: methods, models and applications (Bergamo, 2001), volume 54 of Progr. Nonlinear Differential Equations Appl., pp. 117–126. Birkhäuser, Basel ( 2003)

  18. Clapp, M., Weth, T.: Multiple solutions for the Brezis-Nirenberg problem. Adv. Differ. Equ. 10(4), 463–480 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Clément, P., de Figueiredo, D.G., Mitidieri, E.: Quasilinear elliptic equations with critical exponents. Topol. Methods Nonlinear Anal. 7(1), 133–170 (1996)

    MathSciNet  MATH  Google Scholar 

  20. Conway, J.B.: A Course in Functional Analysis, volume 96 of Graduate Texts in Mathematics, vol. 2. Springer, New York (1990)

    Google Scholar 

  21. Cuesta, M., Takáč, P.: A strong comparison principle for positive solutions of degenerate elliptic equations. Differ. Integr. Equ. 13(4–6), 721–746 (2000)

    MathSciNet  MATH  Google Scholar 

  22. Drábek, P., Huang, Y.X.: Multiplicity of positive solutions for some quasilinear elliptic equation in \({ R}^N\) with critical Sobolev exponent. J. Differ. Equ. 140(1), 106–132 (1997)

    MATH  Google Scholar 

  23. Egnell, H.: Existence and nonexistence results for \(m\)-Laplace equations involving critical Sobolev exponents. Arch. Rational Mech. Anal. 104(1), 57–77 (1988)

    MathSciNet  MATH  Google Scholar 

  24. Evans. L.C.: Partial differential equations, volume 19 (2010)

  25. Federer, H.: Geometric measure theory Die Grundlehren der mathematischen Wissenschaften, vol. 153. Springer, New York (1969)

    Google Scholar 

  26. García Azorero, J., Peral Alonso, I.: Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans. Am. Math. Soc 323(2), 877–895 (1991)

    MathSciNet  MATH  Google Scholar 

  27. García Azorero, J.P., Peral Alonso, I.: Existence and nonuniqueness for the \(p\)-Laplacian: nonlinear eigenvalues. Commun. Partial Differ. Equ. 12(12), 1389–1430 (1987)

    MathSciNet  MATH  Google Scholar 

  28. Ghoussoub, N., Yuan, C.: Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans. Am. Math. Soc. 352(12), 5703–5743 (2000)

    MathSciNet  MATH  Google Scholar 

  29. Guedda, M., Véron, L.: Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. 13(8), 879–902 (1989)

    MathSciNet  MATH  Google Scholar 

  30. Hsu, T.-S.: Multiplicity results for \(p\)-Laplacian with critical nonlinearity of concave-convex type and sign-changing weight functions. Abstr. Appl. Anal. 24, 652109 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Huang, Y.: On multiple solutions of quasilinear equations involving the critical Sobolev exponent. J. Math. Anal. Appl. 231(1), 142–160 (1999)

    MathSciNet  MATH  Google Scholar 

  32. Kawohl, B., Lucia, M., Prashanth, S.: Simplicity of the principal eigenvalue for indefinite quasilinear problems. Adv. Differ. Equ. 12(4), 407–434 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Kazdan, J.L., Warner, F.W.: Remarks on some quasilinear elliptic equations. Commun. Pure Appl. Math. 28(5), 567–597 (1975)

    MathSciNet  MATH  Google Scholar 

  34. Kesavan, S.: Topics in Functional Analysis and Applications. Wiley, New York (1989)

    MATH  Google Scholar 

  35. Kobayashi, J., Ôtani, M.: The principle of symmetric criticality for non-differentiable mappings. J. Funct. Anal. 214(2), 428–449 (2004)

    MathSciNet  MATH  Google Scholar 

  36. Kristály, A., Varga, C., Varga, V.: A nonsmooth principle of symmetric criticality and variational-hemivariational inequalities. J. Math. Anal. Appl. 325(1), 975–986 (2007)

    MathSciNet  MATH  Google Scholar 

  37. Lions, P.-L.: Symétrie et compacité dans les espaces de Sobolev. J. Funct. Anal. 49(3), 315–334 (1982)

    MATH  Google Scholar 

  38. Lions, P.L.: The concentration-compactness principle in the calculus of variations: the locally compact cases I & II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 109–145, 223–283 (1984)

  39. Lions, P.L.: The concentration-compactness principle in the calculus of variations: The limit cases I & II. Rev. Mat. Iberoamericana 1(1), 45–121, 145–201 (1985)

  40. Manes, A., Micheletti, A.M.: Un’estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine. Boll. Un. Mat. Ital. 4(7), 285–301 (1973)

    MathSciNet  MATH  Google Scholar 

  41. Mercuri, C., Pacella, F.: On the pure critical exponent problem for the \(p\)-Laplacian. Calc. Var. Partial Differ. Equ. 49(3–4), 1075–1090 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Miyagaki, O.H.: On a class of semilinear elliptic problems in \({ R}^N\) with critical growth. Nonlinear Anal. 29(7), 773–781 (1997)

    MathSciNet  MATH  Google Scholar 

  43. Noussair, E.S., Swanson, C.A., Yang, J.F.: Quasilinear elliptic problems with critical exponents. Nonlinear Anal. 20(3), 285–301 (1993)

    MathSciNet  MATH  Google Scholar 

  44. Palais, R.S.: The principle of symmetric criticality. Commun. Math. Phys. 69(1), 19–30 (1979)

    MathSciNet  MATH  Google Scholar 

  45. Peral, I.: Multiplicity of solutions for the p-laplacian, lecture notes for the second school of nonlinear functional analysis and applications to differential equations. International Centre of Theoretical Physics—Trieste (Italy) (1997)

  46. Ruiz, D., Willem, M.: Elliptic problems with critical exponents and Hardy potentials. J. Differ. Equ. 190(2), 524–538 (2003)

    MathSciNet  MATH  Google Scholar 

  47. Schechter, M., Zou, W.: On the Brézis-Nirenberg problem. Arch. Ration. Mech. Anal. 197(1), 337–356 (2010)

    MathSciNet  MATH  Google Scholar 

  48. Swanson, C.A., Yu, L.S.: Critical \(p\)-Laplacian problems in \({ R}^N\). Ann. Mat. Pura Appl. 4(169), 233–250 (1995)

    MATH  Google Scholar 

  49. Tertikas, A.: Critical phenomena in linear elliptic problems. J. Funct. Anal. 154(1), 42–66 (1998)

    MathSciNet  MATH  Google Scholar 

  50. Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51(1), 126–150 (1984)

    MathSciNet  MATH  Google Scholar 

  51. Visciglia, N.: A note about the generalized Hardy-Sobolev inequality with potential in \(L^{p, d}({\mathbb{R} }^n)\). Calc. Var. Partial Differ. Equ. 24(2), 167–184 (2005)

    MATH  Google Scholar 

  52. Waliullah, S.: Minimizers and symmetric minimizers for problems with critical Sobolev exponent. Topol. Methods Nonlinear Anal. 34(2), 291–326 (2009)

    MathSciNet  MATH  Google Scholar 

  53. Willem, M.: Minimax Theorems: Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser, Boston (1996)

    Google Scholar 

Download references

Acknowledgements

The second author acknowledges the support of the Israel Science Foundation (Grant 637/19) founded by the Israel Academy of Sciences and Humanities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujjal Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anoop, T.V., Das, U. On the generalised Brézis–Nirenberg problem. Nonlinear Differ. Equ. Appl. 30, 4 (2023). https://doi.org/10.1007/s00030-022-00814-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-022-00814-y

Keywords

Mathematics Subject Classification

Navigation