Skip to main content
Log in

Long-time behavior of solutions to the generalized Allen–Cahn model with degenerate diffusivity

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

The generalized Allen–Cahn equation,

$$\begin{aligned} u_t=\varepsilon ^2(D(u)u_x)_x-\frac{\varepsilon ^2}{2}D'(u)u_x^2-F'(u), \end{aligned}$$

with nonlinear diffusion, \(D = D(u)\), and potential, \(F = F(u)\), of the form

$$\begin{aligned} D(u) = |1-u^2|^{m}, \quad \text {or} \quad D(u) = |1-u|^{m}, \quad m >1, \end{aligned}$$

and

$$\begin{aligned} F(u)=\frac{1}{2n}|1-u^2|^{n}, \qquad n\ge 2, \end{aligned}$$

respectively, is studied. These choices correspond to a reaction function that can be derived from a double well potential, and to a generalized degenerate diffusivity coefficient depending on the density u that vanishes at one or at the two wells, \(u = \pm 1\). It is shown that interface layer solutions that are equal to \(\pm 1\) except at a finite number of thin transitions of width \(\varepsilon \) persist for an either exponentially or algebraically long time, depending upon the interplay between the exponents n and m. For that purpose, energy bounds for a renormalized effective energy potential of Ginzburg–Landau type are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adams, R., Fournier, J.: Sobolev Spaces. Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Amsterdam, 2003.

  2. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979)

    Article  Google Scholar 

  3. Bethuel, F., Smets, D.: Slow motion for equal depth multiple-well gradient systems: the degenerate case. Discrete Contin. Dyn. Syst. 33(1), 67–87 (2013)

    Article  MathSciNet  Google Scholar 

  4. Blowey, J.F., Elliott, C.M.: The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. I. Mathematical analysis. European J. Appl. Math. 2(3), 233–280 (1991)

    Article  MathSciNet  Google Scholar 

  5. Bronsard, L., Kohn, R.V.: On the slowness of phase boundary motion in one space dimension. Comm. Pure Appl. Math. 43(8), 983–997 (1990)

    Article  MathSciNet  Google Scholar 

  6. Cahn, J.W.: Free energy of a nonuniform system. II. Thermodynamic basis. J. Chem. Phys. 30, 1121–1124 (1959)

    Article  Google Scholar 

  7. Cahn, J. W.: On spinodal decomposition. Acta Metall. 9(9), 795–801 (1961)

    Article  Google Scholar 

  8. Cahn, J.W., Elliott, C.M., Novick-Cohen, A.: The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. European J. Appl. Math. 7(3), 287–301 (1996)

    Article  MathSciNet  Google Scholar 

  9. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Article  Google Scholar 

  10. Cahn, J.W., Hilliard, J.E.: Spinodal decomposition: A reprise. Acta Metall. 19(2), 151–161 (1971)

    Article  Google Scholar 

  11. Cahn, J.W., Taylor, J.E.: Surface motion by surface diffusion. Acta Metall. Mater. 42(4), 1045–1063 (1994)

    Article  Google Scholar 

  12. Carr, J., Pego, R.L.: Metastable patterns in solutions of \(u_t=\epsilon ^2u_{xx}-f(u)\). Comm. Pure Appl. Math. 42(5), 523–576 (1989)

    Article  MathSciNet  Google Scholar 

  13. Carr, J., Pego, R.L.: Invariant manifolds for metastable patterns in \(u_t=\epsilon ^2u_{xx}-f(u)\). Proc. Roy. Soc. Edinburgh Sect. A 116(1–2), 133–160 (1990)

    Article  MathSciNet  Google Scholar 

  14. Chen, X.: Generation, propagation, and annihilation of metastable patterns. J. Differential Equations 206(2), 399–437 (2004)

    Article  MathSciNet  Google Scholar 

  15. Cirillo, E.N.M., Ianiro, N., Sciarra, G.: Allen-Cahn and Cahn-Hilliard-like equations for dissipative dynamics of saturated porous media. J. Mech. Phys. Solids 61(2), 629–651 (2013)

    Article  MathSciNet  Google Scholar 

  16. Cirillo, E.N.M., Ianiro, N., Sciarra, G.: Compacton formation under Allen-Cahn dynamics. Proc. A. 472(2188), 20150852, 15 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Cirillo, E.N.M., Saccomandi, G., Sciarra, G.: Compact structures as true non-linear phenomena. Math. Eng. 1(3), 434–446 (2019)

    Article  MathSciNet  Google Scholar 

  18. Cueto-Felgueroso, L., Juanes, R.: Macroscopic phase-field model of partial wetting: Bubbles in a capillary tube. Phys. Rev. Lett. 108, 144502 (2012)

    Article  Google Scholar 

  19. Dai, S., Du, Q.: Weak solutions for the Cahn-Hilliard equation with degenerate mobility. Arch. Ration. Mech. Anal. 219(3), 1161–1184 (2016)

    Article  MathSciNet  Google Scholar 

  20. Dal Maso, G.: An introduction to \(\Gamma \)-convergence. Progress in Nonlinear Differential Equations and their Applications, vol. 8. Birkhäuser Boston Inc, Boston, MA (1993)

  21. Dal Passo, R., Giacomelli, L., Novick-Cohen, A.: Existence for an Allen-Cahn/Cahn-Hilliard system with degenerate mobility. Interfaces Free Bound. 1(2), 199–226 (1999)

    Article  MathSciNet  Google Scholar 

  22. Elliott, C.M., Garcke, H.: On the Cahn-Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27(2), 404–423 (1996)

    Article  MathSciNet  Google Scholar 

  23. Elliott, C.M., Garcke, H.: Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix. Phys. D 109(3–4), 242–256 (1997)

    Article  MathSciNet  Google Scholar 

  24. Folino, R., Hernández Melo, C.A., Lopez Rios, L., Plaza, R.G.: Exponentially slow motion of interface layers for the one-dimensional Allen-Cahn equation with nonlinear phase-dependent diffusivity. Z. Angew. Math. Phys. 71(4), 132, 1–25 (2020)

    Article  MathSciNet  Google Scholar 

  25. Folino, R., Lattanzio, C., Mascia, C.: Slow dynamics for the hyperbolic Cahn-Hilliard equation in one-space dimension. Math. Methods Appl. Sci. 42(8), 2492–2512 (2019)

    Article  MathSciNet  Google Scholar 

  26. Folino, R., Plaza, R.G., Strani, M.: Metastable patterns for a reaction-diffusion model with mean curvature-type diffusion. J. Math. Anal. Appl. 493(1), 124455 (2021)

    Article  MathSciNet  Google Scholar 

  27. Fusco, G., Hale, J.K.: Slow-motion manifolds, dormant instability, and singular perturbations. J. Dynam. Differential Equations 1(1), 75–94 (1989)

    Article  MathSciNet  Google Scholar 

  28. Gilding, B.H., Kersner, R.: A necessary and sufficient condition for finite speed of propagation in the theory of doubly nonlinear degenerate parabolic equations. Proc. Roy. Soc. Edinburgh Sect. A 126(4), 739–767 (1996)

    Article  MathSciNet  Google Scholar 

  29. Grant, C.P.: Slow motion in one-dimensional Cahn-Morral systems. SIAM J. Math. Anal. 26(1), 21–34 (1995)

    Article  MathSciNet  Google Scholar 

  30. Hosono, Y.: Traveling waves for some biological systems with density dependent diffusion. Japan J. Appl. Math. 4(2), 297–359 (1987)

    Article  MathSciNet  Google Scholar 

  31. Owen, N.C., Sternberg, P.: Nonconvex variational problems with anisotropic perturbations. Nonlinear Anal. 16(7–8), 705–719 (1991)

    Article  MathSciNet  Google Scholar 

  32. Sánchez-Garduño, F., Maini, P.K.: Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations. J. Math. Biol. 35(6), 713–728 (1997)

    Article  MathSciNet  Google Scholar 

  33. Taylor, J.E., Cahn, J.W.: Linking anisotropic sharp and diffuse surface motion laws via gradient flows. J. Statist. Phys. 77(1–2), 183–197 (1994)

    Article  MathSciNet  Google Scholar 

  34. Vázquez, J.L.: The porous medium equation: Mathematical Theory. The Clarendon Press, Oxford University Press, Oxford, Oxford Mathematical Monographs (2007)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank an anonymous referee for valuable suggestions and comments. The work of RGP was partially supported by DGAPA-UNAM, program PAPIIT, grant IN-104922.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Folino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Folino, R., Ríos, L.F.L. & Plaza, R.G. Long-time behavior of solutions to the generalized Allen–Cahn model with degenerate diffusivity. Nonlinear Differ. Equ. Appl. 29, 45 (2022). https://doi.org/10.1007/s00030-022-00779-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-022-00779-y

Keywords

Mathematics Subject Classification

Navigation