Skip to main content
Log in

Variational p-harmonious functions: existence and convergence to p-harmonic functions

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In a recent paper, the last three authors showed that a game-theoretic p-harmonic function v is characterized by an asymptotic mean value property with respect to a kind of mean value \(\nu _p^r[v](x)\) defined variationally on balls \(B_r(x)\). In this paper, in a domain \(\Omega \subset \mathbb {R}^N\), \(N\ge 2\), we consider the operator \(\mu _p^\varepsilon \), acting on continuous functions on \(\overline{\Omega }\), defined by the formula \(\mu _p^\varepsilon [v](x)=\nu ^{r_\varepsilon (x)}_p[v](x)\), where \(r_\varepsilon (x)=\min [\varepsilon ,\mathop {\mathrm {dist}}(x,\Gamma )]\) and \(\Gamma \) denotes the boundary of \(\Omega \). We first derive various properties of \(\mu ^\varepsilon _p\) such as continuity and monotonicity. Then, we prove the existence and uniqueness of a function \(u^\varepsilon \in C(\overline{\Omega })\) satisfying the Dirichlet-type problem:

$$\begin{aligned} u(x)=\mu _p^\varepsilon [u](x) \ \text{ for } \text{ every } \ x\in \Omega ,\quad u=g \ \hbox { on } \ \Gamma , \end{aligned}$$

for any given function \(g\in C(\Gamma )\). This result holds, if we assume the existence of a suitable notion of barrier for all points in \(\Gamma \). That \(u^\varepsilon \) is what we call the variational p-harmonious function with Dirichlet boundary data g, and is obtained by means of a Perron-type method based on a comparison principle. We then show that the family \(\{ u^\varepsilon \}_{\varepsilon >0}\) gives an approximation for the viscosity solution \(u\in C(\overline{\Omega })\) of

$$\begin{aligned} \Delta _p^G u=0 \ \text{ in } \Omega , \quad u=g \ \hbox { on } \ \Gamma , \end{aligned}$$

where \(\Delta _p^G\) is the so-called game-theoretic (or homogeneous) p-Laplace operator. In fact, we prove that \(u^\varepsilon \) converges to u, uniformly on \(\overline{\Omega }\) as \(\varepsilon \rightarrow 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alber, Y.I.: A bound for the modulus of continuity for metric projectiond in a uniformly convex and uniformly smooth Banach space. J. Approx. Theory 85, 237–249 (1996)

    Article  MathSciNet  Google Scholar 

  2. Arroyo, A., Heino, J., Parviainen, M.: Tug-of-war games with varying probabilities and the normalized \(p(x)\)-Laplacian. Commun. Pure Appl. Anal. 16, 915–944 (2017)

    Article  MathSciNet  Google Scholar 

  3. Barles, G., Burdeau, J.: The Dirichlet problem for semilinear second-order degenerate elliptic equations and applications to stochastic exit time control problems. Commun. Partial Differ. Equ. 20, 129–178 (1995)

    Article  MathSciNet  Google Scholar 

  4. Barles, G., Perthame, B.: Discontinuous solutions of deterministic optimal stopping time problems. RAIRO Modél. Math. Anal. Numér. 21, 557–579 (1987)

    Article  MathSciNet  Google Scholar 

  5. Barles, G., Perthame, B.: Exit time problems in optimal control and vanishing viscosity method. SIAM J. Control Optim. 26, 1133–1148 (1988)

    Article  MathSciNet  Google Scholar 

  6. Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal. 4, 271–283 (1991)

    Article  MathSciNet  Google Scholar 

  7. Codenotti, L., Lewicka, M., Manfredi, J.J.: Discrete approximations to the double-obstacle problem and optimal stopping of tug-of-war games. Trans. Amer. Math. Soc. 369, 7387–7403 (2017)

    Article  MathSciNet  Google Scholar 

  8. Crandall, M.G., Ishii, H., Lions, P.L.: Users guide to viscosity \(p\)-solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27, 1–67 (1992)

    Article  MathSciNet  Google Scholar 

  9. del Teso, F., Manfredi, J. J., Parviainen, M.: Convergence of dynamic programming principles for the \(p\)-Laplacian, Adv. Calc. Var. (2020). (arXiv:1808.10154v3 [math.AP] 17 Mar 2020)

  10. Falcone, M., Finzi, V.S., Giorgi, T., Smits, R.G.: A semi-Lagrangian scheme for the game \(p\)-Laplacian via \(p\)-averaging. Appl. Numer. Math. 73, 63–80 (2013)

    Article  MathSciNet  Google Scholar 

  11. Hartenstine, D., Rudd, M.: Perrons method for \(p\)-harmonious functions. Electron. J. Differ. Equ. 2016, 1–12 (2016)

    Article  MathSciNet  Google Scholar 

  12. Hartenstine, D., Rudd, M.: Statistical functional equations and \(p\)-harmonious functions. Adv. Nonlinear Stud. 13, 191–207 (2013)

    Article  MathSciNet  Google Scholar 

  13. Hartikainen, H.: A dynamic programming principle with continuous solutions related to the \(p\)-Laplacian \(1<p < \infty \). Differ. Int. Equ. 29, 583–600 (2016)

  14. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Dover Publications Inc, Mineola (2006)

    MATH  Google Scholar 

  15. Ishii, H.: A boundary value problem of the Dirichlet type for Hamilton–Jacobi equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4(16), 105–135 (1989)

    MathSciNet  MATH  Google Scholar 

  16. Ishiwata, M., Magnanini, R., Wadade, H.: A natural approach to the asymptotic mean value property for the \(p\)-Laplacian. Calc. Var. Partial Differ. Equ. 56, 56–97 (2017)

    Article  MathSciNet  Google Scholar 

  17. Juutinen, P., Lindqvist, P., Manfredi, J.J.: On the equivalence of viscosity \(p\)-solutions and weak solutions for a quasi-linear equation. SIAM J. Math. Anal. 33, 699–717 (2001)

    Article  MathSciNet  Google Scholar 

  18. Koike, S.: A Beginners Guide to the Theory of Viscosity \(p\)-Solutions, MSJ Memoirs, vol. 13. Mathematical Society of Japan, Tokyo (2004)

    Google Scholar 

  19. Le Gruyer, E.: On absolutely minimizing Lipschitz extensions and PDE \({\Delta }_\infty (u)=0\). NoDEA Nonlinear Differ. Equ. Appl. 14, 29–55 (2007)

    Article  Google Scholar 

  20. Lewicka, M., Manfredi, J.J.: The obstacle problem for the \(p\)-Laplacian via optimal stopping of tug-of-war games. Probab. Theory Rel. 167, 349–378 (2017)

    Article  MathSciNet  Google Scholar 

  21. Lewicka, M., Manfredi, J.J., Ricciotti, D.: Random walks and random tug of war in the Heisenberg group. Math. Ann. 377, 797–846 (2020)

    Article  MathSciNet  Google Scholar 

  22. Luiro, H., Parviainen, M.: Regularity for nonlinear stochastic games. Ann. Inst. H. Poincaré Anal. Non Linéaire 35, 1435–1456 (2018)

    Article  MathSciNet  Google Scholar 

  23. Luiro, H., Parviainen, M., Saksman, E.: On the existence and uniqueness of \(p\)-harmonious functions. Differ. Int. Equ. 27, 201–216 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Manfredi, J.J., Parviainen, M., Rossi, J.D.: An asymptotic mean value characterization for \(p\)-harmonic functions. Proc. Amer. Math. Sco. 138, 881–889 (2010)

    Article  MathSciNet  Google Scholar 

  25. Manfredi, J..J., Parviainen, M., Rossi, J..D.: On the definition and properties of \(p\)-harmonious functions. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5(11), 215–241 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Manfredi, J.J., Stroffolini, B.: Convergence of the natural \(p\)-means for the \(p\)-Laplacian. ESAIM Control Optim. Calc. Var. 27, 1–17 (2021)

    Article  MathSciNet  Google Scholar 

  27. Noah, S.G.: The median of a continuous function. Real Anal. Exchange 33, 269–274 (2008)

    Article  MathSciNet  Google Scholar 

  28. Peres, Y., Sheffield, S.: Tug-of-war with noise?: a game-theoretic view of the \(p\)-Laplacian. Duke Math. J. 145, 91–120 (2008)

    Article  MathSciNet  Google Scholar 

  29. Peres, Y., Schramm, O., Sheffield, S., Scott, D.B.: Tug-of-war and the infinity Laplacian. J. Amer. Math. Soc. 22, 167–210 (2009)

    Article  MathSciNet  Google Scholar 

  30. Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1976)

    MATH  Google Scholar 

Download references

Acknowledgements

The third author was partially supported by the Gruppo Nazionale di Analisi Matematica, Probabilità e Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). Part of the research related to this paper was carried out during a his visit to Kanazawa University and Osaka University. He wishes to thank those institutions for their warm hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Wadade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, E.W., Ishiwata, M., Magnanini, R. et al. Variational p-harmonious functions: existence and convergence to p-harmonic functions. Nonlinear Differ. Equ. Appl. 28, 51 (2021). https://doi.org/10.1007/s00030-021-00714-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-021-00714-7

Mathematics Subject Classification

Navigation