Bamón, R., Flores, I., del Pino, M.: Ground states of semilinear elliptic equations: a geometric approach. Ann. Inst. H. Poincaré Anal. Non Linéaire 17, 551–581 (2000)
MathSciNet
Article
Google Scholar
Benguria, R.D., Dolbeault, J., Esteban, M.: Classification of the solutions of semilinear elliptic problems in a ball. J. Differ. Equ. 167, 438–466 (2000)
MathSciNet
Article
Google Scholar
Brezis, H., Vázquez, J.: Blow-up solutions of some nonlinear elliptic problems. Rev. Mat. Univ. Complut. Madrid 10, 443–469 (1997)
MathSciNet
MATH
Google Scholar
Budd, C., Norbury, C.J.: Semilinear elliptic equations and supercritical growth. J. Differ. Equ. 68, 169–197 (1987)
MathSciNet
Article
Google Scholar
Caffarelli, L., Li, Y.Y., Nirenberg, L.: Some remarks on singular solutions of nonlinear elliptic equations II: symmetry and monotonicity via moving planes. In: Advances in Geometric Analysis in Adv. Lect. Math. (ALM), vol. 21, Int. Press, Somerville, MA, pp. 97–105 (2012)
Campos, J.F.: “Bubble-tower” phenomena in a semilinear elliptic equation with mixed Sobolev growth. Nonlinear Anal. 68, 1382–1397 (2008)
MathSciNet
Article
Google Scholar
Chen, C.-C., Lin, C.-S.: Existence of positive weak solutions with a prescribed singular set of semilinear elliptic equations. J. Geom. Anal. 9, 221–246 (1999)
MathSciNet
Article
Google Scholar
Chern, J., Chen, Z., Chen, J., Tang, Y.: On the classification of standing wave solutions for the Schrödinger equation. Commun. Partial Differ. Equ. 35, 275–301 (2010)
Article
Google Scholar
Dávila, J., Dupaigne, L.: Perturbing singular solutions of the Gelfand problem. Commun. Contemp. Math. 9, 639–680 (2007)
MathSciNet
Article
Google Scholar
Dávila, J., Guerra, I.: Slowly decaying radial solutions of an elliptic equation with subcritical and supercritical exponents. J. Anal. Math. 129, 367–391 (2016)
MathSciNet
Article
Google Scholar
Dancer, E., Guo, Z., Wei, J.: Non-radial singular solutions of the Lane-Emden equation in \({\bf R}^N\). Indiana Univ. Math. J. 61, 1971–1996 (2012)
MathSciNet
Article
Google Scholar
Dolbeault, J., Esteban, M.J., Ramaswamy, M.: Radial singular solutions of a critical problem in a ball. Differ. Integral Equ. 15, 1459–1474 (2002)
MathSciNet
MATH
Google Scholar
Dolbeault, J., Flores, I.: Geometry of phase space and solutions of semilinear elliptic equations in a ball. Trans. Am. Math. Soc. 359, 4073–4087 (2007)
MathSciNet
Article
Google Scholar
Esposito, F., Farina, A., Sciunzi, B.: Qualitative properties of singular solutions to semilinear elliptic problems. J. Differ. Equ. 265, 1962–1983 (2018)
MathSciNet
Article
Google Scholar
Flores, I.: Singular solutions of the Brezis–Nirenberg problem in a ball. Commun. Pure Appl. Anal. 8, 673–682 (2009)
MathSciNet
Article
Google Scholar
Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209–243 (1979)
MathSciNet
Article
Google Scholar
Guo, Z., Wei, J.: Global solution branch and Morse index estimates of a semilinear elliptic equation with super-critical exponent. Trans. Am. Math. Soc. 363, 4777–4799 (2011)
MathSciNet
Article
Google Scholar
Johnson, R.A., Pan, X.B., Yi, Y.: Singular solutions of the elliptic equation \(\Delta u -u + u^{p} = 0\). Ann. Mat. Pura Appl. 166(4), 203–225 (1994)
MathSciNet
Article
Google Scholar
Joseph, D.D., Lundgren, T.S.: Quasilinear Dirichlet problems driven by positive sources. Arch. Ration. Mech. Anal. 49, 241–269 (1972/73)
Korman, P.: Solution curves for semilinear equations on a ball. Proc. Am. Math. Soc. 125, 1997–2005 (1997)
MathSciNet
Article
Google Scholar
Lin, S.: Positive singular solutions for semilinear elliptic equations with supercritical growth. J. Differ. Equ. 114, 57–76 (1994)
MathSciNet
Article
Google Scholar
Liu, Y., Li, Y., Deng, Y.: Separation property of solutions for a semilinear elliptic equation. J. Differ. Equ. 163, 381–406 (2000)
MathSciNet
Article
Google Scholar
Mazzeo, R., Pacard, F.: A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis. J. Differ. Geom. 44, 331–370 (1996)
MathSciNet
Article
Google Scholar
Merle, F., Peletier, L.: Positive solutions of elliptic equations involving supercritical growth. Proc. R. Soc. Edinb. Sect. A 118, 49–62 (1991)
MathSciNet
Article
Google Scholar
Mignot, F., Puel, J.-P.: Solution radiale singulière de \(-\Delta u = \lambda e^{u}\). C. R. Acad. Sci. Paris Sér. I Math. 307, 379–382 (1988)
MathSciNet
MATH
Google Scholar
Miyamoto, Y.: Structure of the positive solutions for supercritical elliptic equations in a ball. J. Math. Pures Appl. 102, 672–701 (2014)
MathSciNet
Article
Google Scholar
Miyamoto, Y.: Classification of bifurcation diagrams for elliptic equations with exponential growth in a ball. Ann. Mat. Pura Appl. 194, 931–952 (2015)
MathSciNet
Article
Google Scholar
Miyamoto, Y.: A limit equation and bifurcation diagrams for semilinear elliptic equations with general supercritical growth. J. Differ. Equ. 264, 2684–2707 (2018)
MathSciNet
Article
Google Scholar
Miyamoto, Y.: Infinitely many non-radial singular solutions of \(\Delta u + e^u = 0\) in \({\bf R}^N\setminus \{0\}\), \(4 \le N \le 10\). Proc. R. Soc. Edinb. Sect. A 148, 133–147 (2018)
Article
Google Scholar
Miyamoto, Y., Naito, Y.: Singular extremal solutions for supercritical elliptic equations in a ball. J. Differ. Equ. 265, 2842–2885 (2018)
MathSciNet
Article
Google Scholar
Ni, W.-M., Serrin, J.: Nonexistence theorems for singular solutions of quasilinear partial differential equations. Commun. Pure Appl. Math. 39, 379–399 (1986)
MathSciNet
Article
Google Scholar
Rébaï, Y.: Solutions of semilinear elliptic equations with one isolated singularity. Differ. Integr. Equ. 12, 563–581 (1999)
MathSciNet
MATH
Google Scholar
Sciunzi, B.: On the moving plane method for singular solutions to semilinear elliptic equations. J. Math. Pures Appl. 108(9), 111–123 (2017)
MathSciNet
Article
Google Scholar
Serrin, J., Zou, H.: Classification of positive solutions of quasilinear elliptic equations. Topol. Methods Nonlinear Anal. 3, 1–25 (1994)
MathSciNet
Article
Google Scholar
Tello, J.I.: Stability of steady states of the Cauchy problem for the exponential reaction-diffusion equation. J. Math. Anal. Appl. 324, 381–396 (2006)
MathSciNet
Article
Google Scholar