Skip to main content
Log in

On principal frequencies, volume and inradius in convex sets

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

We provide a sharp double-sided estimate for Poincaré–Sobolev constants on a convex set, in terms of its inradius and \(N-\)dimensional measure. Our results extend and unify previous works by Hersch and Protter (for the first eigenvalue) and of Makai, Pólya and Szegő (for the torsional rigidity), by means of a single proof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. By capacity of an open set \(\Omega \subset {\mathbb {R}}^N\), we mean the quantity

    $$\begin{aligned} \mathrm {cap\,}(\Omega )=\inf _{u\in C^\infty _0({\mathbb {R}}^N)}\left\{ \int \nolimits _{{\mathbb {R}}^N} |\nabla u|^2\,dx+\int \nolimits _{{\mathbb {R}}^N}u^2\,dx\, :\, u\ge 1 \text{ on } \Omega \right\} , \end{aligned}$$

    see [8, Chapter 4] for more details.

  2. Observe that \(-\frac{2}{N}-\frac{2-q}{q}<0\) as \(2\le q<2^*\).

  3. Caveat for the reader: in the notation of both [18] and [17], we have \(4\,T(\Omega )=P(\Omega )\).

  4. Observe that this \(\varphi \) is only a \(W^{1,2}\) function with compact support in \(\Omega \), but by a standard density argument it is clearly admissible.

  5. Observe that

    $$\begin{aligned} \frac{2-q}{q}+\frac{2}{N}>0, \end{aligned}$$

    thanks to the fact that \(1\le q<2^*\).

References

  1. van den Berg, M.: Estimates for the torsion function and Sobolev constants. Potential Anal. 36, 607–616 (2012)

    Google Scholar 

  2. van den Berg, M., Buttazzo, G., Pratelli, A.: On the relations between principal eigenvalue and torsional rigidity, preprint (2019), available at arXiv:1910.14593

  3. van den Berg, M., Ferone, V., Nitsch, C., Trombetti, C.: On a Pólya functional for rhombi, isosceles triangles, and thinning convex sets, preprint (2018), available at arXiv:1811.04503

  4. van den Berg, M., Ferone, V., Nitsch, C., Trombetti, C.: On Pólya’s inequality for torsional rigidity and first Dirichlet eigenvalue. Integral Equ. Oper. Theory 86, 579–600 (2016)

    Google Scholar 

  5. Brasco, L.: On principal frequencies and isoperimetric ratios in convex sets, to appear on Ann. Fac. Sci. Toulouse Math., available at http://cvgmt.sns.it/paper/3891/

  6. Brasco, L.: On principal frequencies and inradius in convex sets, Bruno Pini Mathematical Analysis Seminar 2018, Bruno Pini Math. Anal. Semin, pp. 78–101 vol. 9, Univ. Bologna, Alma Mater Stud., Bologna, (2018)

  7. Brasco, L., Ruffini, B.: Compact Sobolev embeddings and torsion functions. Ann. Inst. H. Poincaré Anal. Non Linéaire 34, 817–843 (2017)

    Google Scholar 

  8. Bucur, D., Buttazzo, G.: Variational methods in shape optimization problems. Progress in Nonlinear Differential Equations and their Applications, vol. 65, Birkhäuser Boston Inc., Boston (2005)

  9. Buttazzo, G., Guarino Lo Bianco, S., Marini, M.: Sharp estimates for the anisotropic torsional rigidity and the principal frequency. J. Math. Anal. Appl. 457, 1153–1172 (2018)

    Google Scholar 

  10. Carroll, T., Ratzkin, J.: Interpolating between torsional rigidity and principal frequency. J. Math. Anal. Appl. 379, 818–826 (2011)

    Google Scholar 

  11. Della Pietra, F., Gavitone, N., Guarino Lo Bianco, S.: On functionals involving the torsional rigidity related to some classes of nonlinear operators. J. Differ. Equ. 265, 6424–6442 (2018)

    Google Scholar 

  12. Franzina, G., Lamberti, P.D.: Existence and uniqueness for a \(p\)-Laplacian nonlinear eigenvalue problem. Electron. J. Differ. Equ. 26, 1–10 (2010)

    Google Scholar 

  13. Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics. Birkhauser Verlag, Basel (2006)

    Google Scholar 

  14. Hersch, J.: Sur la fréquence fondamentale d’une membrane vibrante: évaluations par défaut et principe de maximum. Z. Angew. Math. Phys. 11, 387–413 (1960)

    Google Scholar 

  15. Kajikiya, R.: A priori estimate for the first eigenvalue of the \(p\)-Laplacian. Differ. Integral Equ. 28, 1011–1028 (2015)

    Google Scholar 

  16. Kawohl, B.: Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discret. Contin. Dyn. Syst. 6, 683–690 (2000)

    Google Scholar 

  17. Makai, E.: On the principal frequency of a membrane and the torsional rigidity of a beam. In: Studies in Math. Analysis and Related Topics, pp. 227–231 Stanford Univ. Press, Stanford (1962)

  18. Pólya, G., Szegő, G.: Isoperimetric inequalities in mathematical physics. In: Annals of Mathematics Studies, vol. 27, Princeton University Press, Princeton (1951)

  19. Protter, M.H.: A lower bound for the fundamental frequency of a convex region. Proc. Am. Math. Soc. 81, 65–70 (1981)

    Google Scholar 

Download references

Acknowledgements

The initial input for this research has been a question raised by Andrea Malchiodi during a talk of the first author. We wish to thank him. We also thank Vladimir Bobkov, for pointing out the paper [15] to our attention. D. M. has been supported by the INdAM-GNAMPA 2019 project “Ottimizzazione spettrale non lineare ”. Part of this work has been done during a visit of L. B. to Brescia and a visit of D. M. to Ferrara. The hosting institutions and their facilities are gratefully acknowledged.

Funding

Funding was provided by “Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Mazzoleni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Some technical results

Appendix A. Some technical results

The following simple one-dimensional result was an essential ingredient for the proof of the lower bound (1.6).

Lemma A.1

Let \(a>0\) and let \(\xi :[0,a]\rightarrow {\mathbb {R}}\) be an absolutely continuous function such that

$$\begin{aligned} \xi (0)=0\quad \text{ and } \quad t\mapsto \frac{\xi (t)}{t} \text{ is } \text{ non-decreasing }. \end{aligned}$$

Let \(\psi :[0,a]\rightarrow [0,+\infty )\) be a non-increasing function. Then we have

$$\begin{aligned} \int \nolimits _0^a \xi '(t)\,\psi (t)\,dt\le \frac{\xi (a)}{a}\,\int \nolimits _0^a \psi (t)\,dt. \end{aligned}$$

Proof

Without loss of generality we can suppose that \(\psi \) is smooth. By integrating by parts and observing that \(\xi (0)=0\), we have

$$\begin{aligned} \begin{aligned} \int \nolimits _0^a \xi '(t)\,\psi (t)\,dt&=\xi (a)\,\psi (a)+\int \nolimits _0^{a} \xi (t)\,(-\psi '(t))\,dt\\&=\xi (a)\,\psi (a)+\int \nolimits _0^a \frac{\xi (t)}{t}\,t\,(-\psi '(t))\,dt\\&\le \xi (a)\,\psi (a)+\int \nolimits _0^a \frac{\xi (a)}{a}\,t\,(-\psi '(t))\,dt, \end{aligned} \end{aligned}$$

where we also used the monotonicity of both \(\xi (t)/t\) and \(\psi (t)\). We now further integrate by parts the last integral, so to get

$$\begin{aligned} \int \nolimits _0^a \xi '(t)\,\psi (t)\,dt\le \xi (a)\,\psi (a)-\frac{\xi (a)}{a}\,a\,\psi (a)+\frac{\xi (a)}{a}\,\int \nolimits _0^a \psi (t)\,dt. \end{aligned}$$

This concludes the proof. \(\square \)

Lemma A.2

Let \(N\ge 2\) and let \(1\le q<2^*\), for every \(L>0\) we set

$$\begin{aligned} \Omega _L=\left( -\frac{L}{2},\frac{L}{2}\right) ^{N-1}\times (0,1). \end{aligned}$$

Then we have:

  1. 1.

    for \(1\le q\le 2\)

    $$\begin{aligned} \lim _{L\rightarrow +\infty } L^{(N-1)\,\frac{2-q}{q}}\,\lambda _{2,q}(\Omega _L)=\Big (\pi _{2,q}\Big )^2,\quad \text{ as } L\rightarrow +\infty . \end{aligned}$$
  2. 2.

    for \(2<q<2^*\)

    $$\begin{aligned} \lim _{L\rightarrow +\infty } \lambda _{2,q}(\Omega _L)=\lambda _{2,q}({\mathbb {R}}^{N-1}\times (0,1))>0. \end{aligned}$$

Proof

We distinguish again the two cases.

Case\(1\le q\le 2\). For \(q=2\) this is contained for example in [5, Lemma A.2], we thus focus on the case \(q<2\). By [5, equation (3.6)], we have

$$\begin{aligned} \lim _{L\rightarrow +\infty }\lambda _{2,q}(\Omega _L)\,\left( \frac{|\Omega _L|^{\frac{1}{2}+\frac{1}{q}}}{P(\Omega _L)}\right) ^2=\left( \frac{\pi _{2,q}}{2}\right) ^2, \end{aligned}$$

where \(P(\Omega _L)\) stands for the perimeter of \(\Omega _L\). If we now use that

$$\begin{aligned} |\Omega _L|= L^{N-1}\quad \text{ and } \quad P(\Omega _L)\sim 2\,L^{N-1},\quad \text{ as } L\rightarrow +\infty , \end{aligned}$$

we get the desired result.

Case\(2<q<2^*\). By monotonicity of \(\lambda _{2,q}\) with respect to set inclusion, we have that

$$\begin{aligned} \lambda _{2,q}(\Omega _L)\ge \lambda _{2,q}({\mathbb {R}}^{N-1}\times (0,1))\quad \text{ and }\quad L\mapsto \lambda _{2,q}(\Omega _L) \text{ is } \text{ monotone } \text{ decreasing }. \end{aligned}$$

Thus we get that

$$\begin{aligned} \lim _{L\rightarrow +\infty }\lambda _{2,q}(\Omega _L)\ge \lambda _{2,q}({\mathbb {R}}^{N-1}\times (0,1)). \end{aligned}$$

On the other hand, for every \(\varepsilon >0\) we can take \(\varphi _\varepsilon \in C^\infty _0({\mathbb {R}}^{N-1}\times (0,1))\) such that

$$\begin{aligned} \lambda _{2,q}({\mathbb {R}}^{N-1}\times (0,1))+\varepsilon \ge \frac{\displaystyle \int \nolimits _{{\mathbb {R}}^{N-1}\times (0,1)} |\nabla \varphi _\varepsilon |^2\,dx}{\displaystyle \left( \int \nolimits _{{\mathbb {R}}^{N-1}\times (0,1)} |\varphi _\varepsilon |^q\,dx\right) ^\frac{2}{q}}. \end{aligned}$$

Since \(\varphi _\varepsilon \) has compact support, for L large enough we get that \(\varphi _\varepsilon \in C^\infty _0(\Omega _L)\), as well. This shows that for every \(\varepsilon >0\)

$$\begin{aligned} \lambda _{2,q}({\mathbb {R}}^{N-1}\times (0,1))+\varepsilon \ge \lim _{L\rightarrow +\infty }\lambda _{2,q}(\Omega _L), \end{aligned}$$

and thus the claimed convergence of \(\lambda _{2,q}(\Omega _L)\) follows.

We are only left with showing that \({\mathbb {R}}^{N-1}\times (0,1)\) has a non-trivial Poincaré–Sobolev constant \(\lambda _{2,q}\). By recalling that for a open convex set \(\Omega \subset {\mathbb {R}}^N\) we have (see [6, Proposition 6.3])

$$\begin{aligned} \lambda _{2,q}(\Omega )\ge \frac{C_{N,q}}{R_\Omega ^{2+\frac{2-q}{q}\,N}}, \end{aligned}$$

we get the desired assertion. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brasco, L., Mazzoleni, D. On principal frequencies, volume and inradius in convex sets. Nonlinear Differ. Equ. Appl. 27, 12 (2020). https://doi.org/10.1007/s00030-019-0614-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-019-0614-2

Keywords

Mathematics Subject Classification

Navigation