Abstract
The purpose of this article is to establish the incompressible Euler limit for the Boltzmann equation in the whole space and a periodic box in the case where local smooth solutions of the incompressible Euler system are given.
Similar content being viewed by others
References
Bardos, C., Golse, F., Levermore, D.: Fluid dynamical limits of kinetic equations I: formal derivations. J. Stat. Phys. 63, 323–344 (1991)
Bardos, C., Golse, F., Levermore, D.: Fluid dynamical limits of kinetic equations II: convergence proofs for the Boltzmann equation. Commun. Pure Appl. Math. 46, 667–753 (1993)
Beale, J., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3D Euler equations. Commun. Math. Phys. 94, 61–66 (1984)
Boltzmann, L.: Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen Sitzungs. Akad. Wiss. Wien 66, 275–370 (1873)
Caflisch, R.E.: The fluid dynamical limit of the nonlinear Boltzmann equation. Commun. Pure Appl. Math. 33, 651–666 (1980)
Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, New York (1994)
De Masi, A., Esposito, R., Lebowitz, J.L.: Incompressible Navier–Stokes and Euler limits of the Boltzmann equation. Commun. Pure Appl. Math. 42, 1189–1214 (1989)
Duan, R., Liu, S.: Compressible Navier–Stokes approximation for the Boltzmann equation in bounded domain. arXiv:1806.09796. Preprint (2018)
Esposito, R., Guo, Y., Kim, C., Marra, R.: Stationary solutions to the Boltzmann equation in the hydrodynamic limit. Ann. PDE 4, 1–119 (2018)
Golse, F.: From the Boltzmann equation to the Euler equations in the presence of boundaries. Comput. Math. Appl. 65, 815–830 (2013)
Golse, F., Saint-Raymond, L.: The Navier–Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math. 155, 81–161 (2004)
Guo, Y.: The Vlasov–Poisson–Boltzmann system near Maxwellians. Commun. Pure Appl. Math. 55, 1104–1135 (2002)
Guo, Y.: Boltzmann diffusive limit beyond the Navier–Stokes approximation. Commun. Pure Appl. Math. 59, 626–687 (2006)
Guo, Y.: Decay and continuity of the Boltzmann equation in bounded domains. Arch. Ration. Mech. Anal. 197, 713–809 (2010)
Guo, Y., Jang, J.: Global Hilbert expansion for the Vlasov–Poisson–Boltzmann system. Commun. Math. Phys. 299, 469–501 (2010)
Guo, Y., Jang, J., Jiang, N.: Local Hilbert expansion for the Boltzmann equation. Kinet. Relat. Models 2, 205–214 (2009)
Guo, Y., Jang, J., Jiang, N.: Acoustic limit for the Boltzmann equation in optimal scaling. Commun. Pure Appl. Math. 63, 337–361 (2010)
Glassey, R.: The Cauchy Problems in Kinetic Theory. SIAM, Philadelphia (1996)
Lions, P.L., Masmoudi, N.: From the Boltzmann equations to the equations of incompressible fluid mechanics. I, II. Arch. Ration. Mech. Anal. 158(173–193), 195–211 (2001)
Lions, P.L.: Mathematical Topics in Fluid Mechanics, vol. 1. Incompressible Models, Oxford Science Publications, New York (1996)
Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. 157, 49–88 (1866)
Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids. Springer, New York (1994)
Kato, T.: Nonstationary flows of viscous and ideal fluids in \({\mathbb{R}}^3\). J. Funct. Anal. 9, 296–305 (1972)
Kato, T.: Nonlinear evolution equations and the Euler flow. J. Funct. Anal. 56, 15–28 (1984)
Saint-Raymond, L.: Convergence of solutions to the Boltzmann equation in the incompressible Euler limit. Arch. Ration. Mech. Anal. 166, 47–80 (2003)
Yudovitch, V.: Non stationnary ows of an ideal incompressible fluid. Zh. Vych. Math. 3, 1032–1066 (1963)
Acknowledgements
The authors would like to thank Prof. Yan Guo and Prof. Shuangqian Liu for valuable suggestions. The research is supported by NSFC under the Grant Numbers 11371147 and 11571118, NSFC key project under the Grant Number 11831003 and Fundamental Research Founds for the Central Universities under the Grant Number 2019MS112.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wu, W., Zhou, F. & Li, Y. Incompressible Euler limit of the Boltzmann equation in the whole space and a periodic box. Nonlinear Differ. Equ. Appl. 26, 35 (2019). https://doi.org/10.1007/s00030-019-0582-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00030-019-0582-6