Skip to main content
Log in

Incompressible Euler limit of the Boltzmann equation in the whole space and a periodic box

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

The purpose of this article is to establish the incompressible Euler limit for the Boltzmann equation in the whole space and a periodic box in the case where local smooth solutions of the incompressible Euler system are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardos, C., Golse, F., Levermore, D.: Fluid dynamical limits of kinetic equations I: formal derivations. J. Stat. Phys. 63, 323–344 (1991)

    Article  Google Scholar 

  2. Bardos, C., Golse, F., Levermore, D.: Fluid dynamical limits of kinetic equations II: convergence proofs for the Boltzmann equation. Commun. Pure Appl. Math. 46, 667–753 (1993)

    Article  Google Scholar 

  3. Beale, J., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3D Euler equations. Commun. Math. Phys. 94, 61–66 (1984)

    Article  Google Scholar 

  4. Boltzmann, L.: Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen Sitzungs. Akad. Wiss. Wien 66, 275–370 (1873)

    Google Scholar 

  5. Caflisch, R.E.: The fluid dynamical limit of the nonlinear Boltzmann equation. Commun. Pure Appl. Math. 33, 651–666 (1980)

    Article  Google Scholar 

  6. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, New York (1994)

    Book  Google Scholar 

  7. De Masi, A., Esposito, R., Lebowitz, J.L.: Incompressible Navier–Stokes and Euler limits of the Boltzmann equation. Commun. Pure Appl. Math. 42, 1189–1214 (1989)

    Article  MathSciNet  Google Scholar 

  8. Duan, R., Liu, S.: Compressible Navier–Stokes approximation for the Boltzmann equation in bounded domain. arXiv:1806.09796. Preprint (2018)

  9. Esposito, R., Guo, Y., Kim, C., Marra, R.: Stationary solutions to the Boltzmann equation in the hydrodynamic limit. Ann. PDE 4, 1–119 (2018)

    Article  MathSciNet  Google Scholar 

  10. Golse, F.: From the Boltzmann equation to the Euler equations in the presence of boundaries. Comput. Math. Appl. 65, 815–830 (2013)

    Article  MathSciNet  Google Scholar 

  11. Golse, F., Saint-Raymond, L.: The Navier–Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math. 155, 81–161 (2004)

    Article  MathSciNet  Google Scholar 

  12. Guo, Y.: The Vlasov–Poisson–Boltzmann system near Maxwellians. Commun. Pure Appl. Math. 55, 1104–1135 (2002)

    Article  MathSciNet  Google Scholar 

  13. Guo, Y.: Boltzmann diffusive limit beyond the Navier–Stokes approximation. Commun. Pure Appl. Math. 59, 626–687 (2006)

    Article  MathSciNet  Google Scholar 

  14. Guo, Y.: Decay and continuity of the Boltzmann equation in bounded domains. Arch. Ration. Mech. Anal. 197, 713–809 (2010)

    Article  MathSciNet  Google Scholar 

  15. Guo, Y., Jang, J.: Global Hilbert expansion for the Vlasov–Poisson–Boltzmann system. Commun. Math. Phys. 299, 469–501 (2010)

    Article  MathSciNet  Google Scholar 

  16. Guo, Y., Jang, J., Jiang, N.: Local Hilbert expansion for the Boltzmann equation. Kinet. Relat. Models 2, 205–214 (2009)

    Article  MathSciNet  Google Scholar 

  17. Guo, Y., Jang, J., Jiang, N.: Acoustic limit for the Boltzmann equation in optimal scaling. Commun. Pure Appl. Math. 63, 337–361 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Glassey, R.: The Cauchy Problems in Kinetic Theory. SIAM, Philadelphia (1996)

    Book  Google Scholar 

  19. Lions, P.L., Masmoudi, N.: From the Boltzmann equations to the equations of incompressible fluid mechanics. I, II. Arch. Ration. Mech. Anal. 158(173–193), 195–211 (2001)

    Article  MathSciNet  Google Scholar 

  20. Lions, P.L.: Mathematical Topics in Fluid Mechanics, vol. 1. Incompressible Models, Oxford Science Publications, New York (1996)

  21. Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. 157, 49–88 (1866)

    Google Scholar 

  22. Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids. Springer, New York (1994)

    Book  Google Scholar 

  23. Kato, T.: Nonstationary flows of viscous and ideal fluids in \({\mathbb{R}}^3\). J. Funct. Anal. 9, 296–305 (1972)

    Article  Google Scholar 

  24. Kato, T.: Nonlinear evolution equations and the Euler flow. J. Funct. Anal. 56, 15–28 (1984)

    Article  MathSciNet  Google Scholar 

  25. Saint-Raymond, L.: Convergence of solutions to the Boltzmann equation in the incompressible Euler limit. Arch. Ration. Mech. Anal. 166, 47–80 (2003)

    Article  MathSciNet  Google Scholar 

  26. Yudovitch, V.: Non stationnary ows of an ideal incompressible fluid. Zh. Vych. Math. 3, 1032–1066 (1963)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Yan Guo and Prof. Shuangqian Liu for valuable suggestions. The research is supported by NSFC under the Grant Numbers 11371147 and 11571118, NSFC key project under the Grant Number 11831003 and Fundamental Research Founds for the Central Universities under the Grant Number 2019MS112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijun Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Zhou, F. & Li, Y. Incompressible Euler limit of the Boltzmann equation in the whole space and a periodic box. Nonlinear Differ. Equ. Appl. 26, 35 (2019). https://doi.org/10.1007/s00030-019-0582-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-019-0582-6

Keywords

Mathematics Subject Classification

Navigation