Skip to main content
Log in

The \(\infty \)-eigenvalue problem with a sign-changing weight

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

Let \(\Omega \subset {\mathbb {R}}^{n}\) be a smooth bounded domain and \(m\in C(\overline{\Omega })\) be a sign-changing weight function. For \(1<p<\infty \), consider the eigenvalue problem

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta _{p}u=\lambda m(x)|u|^{p-2}u &{}\quad \text {in}\;\; \Omega ,\\ u=0 &{}\quad \text {on}\;\; \partial \Omega , \end{array} \right. \end{aligned}$$

where \(\Delta _{p}u\) is the usual p-Laplacian. Our purpose in this article is to study the limit as \(p\rightarrow \infty \) for the eigenvalues \(\lambda _{k,p}\left( m\right) \) of the aforementioned problem. In addition, we describe the limit of some normalized associated eigenfunctions when \(k=1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arias, M., Campos, J., Cuesta, M., Gossez, J.-P.: Asymmetric elliptic problems with indefinite weights. Ann. Inst. H. Poincaré Anal. Non Linéaire 19, 581–616 (2002)

    Article  MathSciNet  Google Scholar 

  2. Anane, A.: Simplicité et isolation de la première valeur propre du \(p\)-laplacien avec poids. C. R. Acad. Sci. Paris Sér. I Math. 305, 725–728 (1987)

    MathSciNet  MATH  Google Scholar 

  3. Brasco, L., Parini, E., Squassina, M.: Stability of variational eigenvalues for the fractional p-Laplacian. Discrete Contin. Dyn. Syst. 36, 1813–1845 (2016)

    Article  MathSciNet  Google Scholar 

  4. Belloni, M., Kawohl, B.: The pseudo-\(p\)-Laplace eigenvalue problem and viscosity solutions as \(p\rightarrow \infty \). ESAIM Control Optim. Calc. Var. 10, 28–52 (2004)

    Article  MathSciNet  Google Scholar 

  5. Belloni, M., Kawohl, B., Juutinen, P.: The \(p\)-Laplace eigenvalue problem as \(p\rightarrow \infty \) in a Finsler metric. J. Eur. Math. Soc. 8, 123–138 (2006)

    Article  MathSciNet  Google Scholar 

  6. Brasco, L., Franzina, G.: A pathological example in nonlinear spectral theory. Adv. Nonlinear Anal. 8(1), 707–714 (2019)

    Article  MathSciNet  Google Scholar 

  7. Champion, T., De Pascale, L., Jimenez, C.: The \(\infty \)-eigenvalue problem and a problem of optimal transportation. Commun. Appl. Anal. 13, 547–565 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27, 1–67 (1992)

    Article  MathSciNet  Google Scholar 

  9. Crasta, G., Fragalà, I.: Rigidity results for variational infinity ground states. arXiv:1702.01043v

  10. Cuesta, M.: Eigenvalue problems for the p-Laplacian with indefinite weights. Electron. J. Differ. Equ. 2001(33), 9 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Cuesta, M., Ramos Quoirin, H.: A weighted eigenvalue problem for the \(p\)-Laplacian plus a potential. NoDEA Nonlinear Differ. Equ. Appl. 16, 469–491 (2009)

    Article  MathSciNet  Google Scholar 

  12. Franzina, G., Lamberti, P.D.: Existence and uniqueness for a \(p\)-Laplacian nonlinear eigenvalue problem. Electron. J. Differ. Equ. 2010(26), 1–10 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Franzina, G., Palatucci, G.: Fractional \(p\)-eigenvalues. Riv. Math. Univ. Parma (N.S.) 5, 373–386 (2014)

    MathSciNet  MATH  Google Scholar 

  14. García Azorero, J.P., Peral Alonso, I.: Existence and nonuniqueness for the \(p\)-Laplacian: nonlinear eigenvalues, Comm. Partial Differ. Equ. 12, 1389–1430 (1987)

    MATH  Google Scholar 

  15. Hynd, R., Smart, C.K., Yu, Y.: Nonuniqueness of infinity ground states. Calc. Var. Partial Differ. Equ. 48, 545–554 (2013)

    Article  MathSciNet  Google Scholar 

  16. Juutinen, P., Lindqvist, P.: On the higher eigenvalues for the \(\infty \)-eigenvalue problem. Calc. Var. Partial Differ. Equ. 23, 169–192 (2005)

    Article  MathSciNet  Google Scholar 

  17. Juutinen, P., Lindqvist, P., Manfredi, J.: The \(\infty \)-eigenvalue problem. Arch. Ration. Mech. Anal. 148, 89–105 (1999)

    Article  MathSciNet  Google Scholar 

  18. Juutinen, P.-, Lindqvist, P., Manfredi, J.J.: On the equivalence of viscosity solutions and weak solutions for a quasilinear equation. SIAM J. Math. Anal. 33, 699–717 (2001)

    Article  MathSciNet  Google Scholar 

  19. Kawohl, B., Lindqvist, P.: Positive eigenfunctions for the \(p\)-Laplace operator revisited. Analysis 26, 539–544 (2006)

    Article  MathSciNet  Google Scholar 

  20. Lindgren, E.: The \(\infty \)-harmonic potential is not always an \(\infty \)-eigenfunction. Preprint

  21. Lindgren, E., Lindqvist, P.: Fractional eigenvalues. Calc. Var. Partial Differ. Equ. 49, 795–826 (2014)

    Article  MathSciNet  Google Scholar 

  22. Lindqvist, P.: On the equation \({{\rm div}} (|\nabla u|^{p-2}\nabla u)+\lambda |u|^{p-2}u=0\). Proc. Am. Math. Soc. 109, 157–164 (1990)

    MATH  Google Scholar 

  23. Manfredi, J.J., Rossi, J.D., Urbano, J.M.: \(p(x)\)-Harmonic functions with unbounded exponent in a subdomain. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 2581–2595 (2009)

    Article  MathSciNet  Google Scholar 

  24. Navarro, J.C., Rossi, J.D., San Antolin, A., Saintier, N.: The dependence of the first eigenvalue of the infinity Laplacian with respect to the domain. Glasg. Math. J. 56, 241–249 (2014)

    Article  MathSciNet  Google Scholar 

  25. Struwe, M.: Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 2nd edn. Springer, Berlin (1996)

    MATH  Google Scholar 

  26. Smets, D.: A concentration-compactness lemma with applications to singular eigenvalue problems. J. Funct. Anal. 167, 463–480 (1999)

    Article  MathSciNet  Google Scholar 

  27. Szulkin, A., Willem, M.: Eigenvalue problems with indefinite weight. Stud. Math. 135, 191–201 (1999)

    MathSciNet  MATH  Google Scholar 

  28. Yu, Y.: Some properties of the ground states of the infinity Laplacian. Indiana Univ. Math. J. 56, 947–964 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of UK was partially funded by Secyt-UNC 33620180100016CB (Argentina). The research of JDR was partially supported by CONICET grant PIP GI No 11220150100036CO (Argentina), by UBACyT grant 20020160100155BA (Argentina) and by MINECO MTM2015-70227-P (Spain). JT was partially supported by ANPCyT grant PICT 2016-1054 (Argentina) and by Secyt-UNC 33620180100016CB (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Terra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaufmann, U., Rossi, J.D. & Terra, J. The \(\infty \)-eigenvalue problem with a sign-changing weight. Nonlinear Differ. Equ. Appl. 26, 14 (2019). https://doi.org/10.1007/s00030-019-0561-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-019-0561-y

Keywords

Mathematics Subject Classification

Navigation