Abstract
Let \(\Omega \subset {\mathbb {R}}^{n}\) be a smooth bounded domain and \(m\in C(\overline{\Omega })\) be a sign-changing weight function. For \(1<p<\infty \), consider the eigenvalue problem
where \(\Delta _{p}u\) is the usual p-Laplacian. Our purpose in this article is to study the limit as \(p\rightarrow \infty \) for the eigenvalues \(\lambda _{k,p}\left( m\right) \) of the aforementioned problem. In addition, we describe the limit of some normalized associated eigenfunctions when \(k=1\).
Similar content being viewed by others
References
Arias, M., Campos, J., Cuesta, M., Gossez, J.-P.: Asymmetric elliptic problems with indefinite weights. Ann. Inst. H. Poincaré Anal. Non Linéaire 19, 581–616 (2002)
Anane, A.: Simplicité et isolation de la première valeur propre du \(p\)-laplacien avec poids. C. R. Acad. Sci. Paris Sér. I Math. 305, 725–728 (1987)
Brasco, L., Parini, E., Squassina, M.: Stability of variational eigenvalues for the fractional p-Laplacian. Discrete Contin. Dyn. Syst. 36, 1813–1845 (2016)
Belloni, M., Kawohl, B.: The pseudo-\(p\)-Laplace eigenvalue problem and viscosity solutions as \(p\rightarrow \infty \). ESAIM Control Optim. Calc. Var. 10, 28–52 (2004)
Belloni, M., Kawohl, B., Juutinen, P.: The \(p\)-Laplace eigenvalue problem as \(p\rightarrow \infty \) in a Finsler metric. J. Eur. Math. Soc. 8, 123–138 (2006)
Brasco, L., Franzina, G.: A pathological example in nonlinear spectral theory. Adv. Nonlinear Anal. 8(1), 707–714 (2019)
Champion, T., De Pascale, L., Jimenez, C.: The \(\infty \)-eigenvalue problem and a problem of optimal transportation. Commun. Appl. Anal. 13, 547–565 (2009)
Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27, 1–67 (1992)
Crasta, G., Fragalà, I.: Rigidity results for variational infinity ground states. arXiv:1702.01043v
Cuesta, M.: Eigenvalue problems for the p-Laplacian with indefinite weights. Electron. J. Differ. Equ. 2001(33), 9 (2001)
Cuesta, M., Ramos Quoirin, H.: A weighted eigenvalue problem for the \(p\)-Laplacian plus a potential. NoDEA Nonlinear Differ. Equ. Appl. 16, 469–491 (2009)
Franzina, G., Lamberti, P.D.: Existence and uniqueness for a \(p\)-Laplacian nonlinear eigenvalue problem. Electron. J. Differ. Equ. 2010(26), 1–10 (2010)
Franzina, G., Palatucci, G.: Fractional \(p\)-eigenvalues. Riv. Math. Univ. Parma (N.S.) 5, 373–386 (2014)
García Azorero, J.P., Peral Alonso, I.: Existence and nonuniqueness for the \(p\)-Laplacian: nonlinear eigenvalues, Comm. Partial Differ. Equ. 12, 1389–1430 (1987)
Hynd, R., Smart, C.K., Yu, Y.: Nonuniqueness of infinity ground states. Calc. Var. Partial Differ. Equ. 48, 545–554 (2013)
Juutinen, P., Lindqvist, P.: On the higher eigenvalues for the \(\infty \)-eigenvalue problem. Calc. Var. Partial Differ. Equ. 23, 169–192 (2005)
Juutinen, P., Lindqvist, P., Manfredi, J.: The \(\infty \)-eigenvalue problem. Arch. Ration. Mech. Anal. 148, 89–105 (1999)
Juutinen, P.-, Lindqvist, P., Manfredi, J.J.: On the equivalence of viscosity solutions and weak solutions for a quasilinear equation. SIAM J. Math. Anal. 33, 699–717 (2001)
Kawohl, B., Lindqvist, P.: Positive eigenfunctions for the \(p\)-Laplace operator revisited. Analysis 26, 539–544 (2006)
Lindgren, E.: The \(\infty \)-harmonic potential is not always an \(\infty \)-eigenfunction. Preprint
Lindgren, E., Lindqvist, P.: Fractional eigenvalues. Calc. Var. Partial Differ. Equ. 49, 795–826 (2014)
Lindqvist, P.: On the equation \({{\rm div}} (|\nabla u|^{p-2}\nabla u)+\lambda |u|^{p-2}u=0\). Proc. Am. Math. Soc. 109, 157–164 (1990)
Manfredi, J.J., Rossi, J.D., Urbano, J.M.: \(p(x)\)-Harmonic functions with unbounded exponent in a subdomain. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 2581–2595 (2009)
Navarro, J.C., Rossi, J.D., San Antolin, A., Saintier, N.: The dependence of the first eigenvalue of the infinity Laplacian with respect to the domain. Glasg. Math. J. 56, 241–249 (2014)
Struwe, M.: Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 2nd edn. Springer, Berlin (1996)
Smets, D.: A concentration-compactness lemma with applications to singular eigenvalue problems. J. Funct. Anal. 167, 463–480 (1999)
Szulkin, A., Willem, M.: Eigenvalue problems with indefinite weight. Stud. Math. 135, 191–201 (1999)
Yu, Y.: Some properties of the ground states of the infinity Laplacian. Indiana Univ. Math. J. 56, 947–964 (2007)
Acknowledgements
The research of UK was partially funded by Secyt-UNC 33620180100016CB (Argentina). The research of JDR was partially supported by CONICET grant PIP GI No 11220150100036CO (Argentina), by UBACyT grant 20020160100155BA (Argentina) and by MINECO MTM2015-70227-P (Spain). JT was partially supported by ANPCyT grant PICT 2016-1054 (Argentina) and by Secyt-UNC 33620180100016CB (Argentina).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kaufmann, U., Rossi, J.D. & Terra, J. The \(\infty \)-eigenvalue problem with a sign-changing weight. Nonlinear Differ. Equ. Appl. 26, 14 (2019). https://doi.org/10.1007/s00030-019-0561-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00030-019-0561-y