Weighted anisotropic Hardy and Rellich type inequalities for general vector fields


In this paper, we establish the weighted anisotropic Hardy and Rellich type inequalities with boundary terms for general (real-valued) vector fields. As consequences, we derive new as well as many of the fundamental Hardy and Rellich type inequalities which are known in different settings.

This is a preview of subscription content, log in to check access.


  1. 1.

    Barbatis, G., Filippas, S., Tertikas, A.: A unified approach to improved \(L^p\) Hardy inequalities with best constants. Trans. Am. Math. Soc. 356(6), 2169–2196 (2004)

    Article  Google Scholar 

  2. 2.

    Brezis, H., Marcus, M.: Hardy’s inequalities revisited. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4(25), 217–237 (1998)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    D’Ambrosio, L.: Hardy-type inequalities related to degenerate elliptic differential operators. Ann. Scuola Norm. Sup. Pisa CI. Sci 5, 451–486 (2005)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    D’Ambrosio, L.: Liouville theorems for anisotropic quasilinear inequalities. Nonlinear Anal. 70, 2855–2869 (2009)

    MathSciNet  Article  Google Scholar 

  5. 5.

    D’Ambrosio, L.: Some Hardy inequalities on the Heisenberg group. Differ. Equ. 40(4), 552–564 (2004)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Davies, E.B., Hinz, A.M.: Explicit constants for Rellich inequalities in \(L^p(\Omega )\). Math. Z. 227(3), 511–523 (1998)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Garofalo, N., Lanconelli, E.: Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation. Ann. Inst. Fourier (Grenoble) 40(2), 313–356 (1990)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Goldstein, J., Kombe, I., Yener, A.: A unified approach to weighted Hardy type inequalities on Carnot groups. Discrete Contin. Dyn. Syst. 37(4), 2009–2021 (2017)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Goldstein, J., Kombe, I., Yener, A.: A general approach to weighted Rellich type inequalities on Carnot groups. Monatsh Math. 186, 49–72 (2018)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Ghoussoub, N., Moradifam, A.: Bessel potentials and optimal Hardy and Hardy–Rellich inequalities. Math. Ann. 349, 1–57 (2011)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Kogoj, A.E., Sonner, S.: Hardy-type inequalities for \(\Delta _{\lambda }\)-Laplacians. Complex Variables Elliptic Equ. 61(3), 422–442 (2016)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Kombe, I.: Sharp weighted Rellich and uncertainty principle inequalities on Carnot groups. Commun. Appl. Anal. 14, 251–271 (2010)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Lian, B.: Some sharp Rellich type inequalities on nilpotent groups and application. Acta Math. Sci. 33, 59–74 (2013)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Niu, P., Zhang, H., Wang, Y.: Hardy type and Rellich type inequalities on the Heisenberg group. Proc. AMS 129(12), 3623–3630 (2001)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Ruzhansky, M., Sabitbek, B., Suragan, D.: Weighted \(L^p\)-Hardy and \(L^p\)-Rellich inequalities with boundary terms on stratified Lie groups. Rev. Mat. Complut. 32(1), 19–35 (2019). https://doi.org/10.1007/s13163-018-0268-3

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Ruzhansky M., Sabitbek B., Suragan D.: Hardy and Rellich inequalities for anisotropic p-sub-Laplacians, and horizontal Hardy inequalities for multiple singularities and multi-particles on stratified groups. arXiv:1803.09996

  17. 17.

    Ruzhansky, M., Suragan, D.: On horizontal Hardy, Rellich, Caffarelli–Kohn–Nirenberg and \(p\)-sub-Laplacian inequalities on stratified groups. J. Differ. Equ. 262, 1799–1821 (2017)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Ruzhansky, M., Suragan, D.: Layer potentials, Kac’s problem, and refined Hardy inequality on homogeneous Carnot groups. Adv. Math. 308, 483–528 (2017)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Ruzhansky, M., Suragan, D.: Local Hardy and Rellich inequalities for sums of squares. Adv. Differ. Equ. 22, 505–540 (2017)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Ruzhansky, M., Suragan, D.: Hardy inequalities on homogeneous groups. In: Progress in Mathematics, vol. 327, Birkhauser (open access book) (2019)

  21. 21.

    Sánzhes-Calle, A.: Fundamental solutions and geometry of the sum of squares of vector fields. Invent. Math. 78, 143–160 (1984)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Skrzypczak, I.: Hardy type inequalities derived from p-harmonic problems. Nonlinear Anal. 93, 30–50 (2013)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Wang, J., Niu, P.: Sharp weighted Hardy type inequalities and Hardy-Sobolev type inequalities on polarizable Carnot groups. C. R. Math. Acad. Sci. Paris Ser. I 346, 1231–1234 (2008)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Bolys Sabitbek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was supported by the EPSRC Grant EP/R003025/1, Leverhulme Research Grant RPG-2017-151 and by the FWO Odysseus grant. The second author was supported by the MESRK target program BR05236656. The third author was supported in parts by the MESRK Grant AP05130981 and the office of the povost of Nazarbayev University. No new data was collected or generated during the course of this research.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ruzhansky, M., Sabitbek, B. & Suragan, D. Weighted anisotropic Hardy and Rellich type inequalities for general vector fields. Nonlinear Differ. Equ. Appl. 26, 13 (2019). https://doi.org/10.1007/s00030-019-0559-5

Download citation


  • Vector fields
  • Hardy inequality
  • Rellich inequality
  • Picone identity
  • Uncertainty principle

Mathematics Subject Classification

  • 35A23
  • 35H20