\(\varvec{p}\)-Laplacian problems involving critical Hardy–Sobolev exponents



We prove existence, multiplicity, and bifurcation results for p-Laplacian problems involving critical Hardy–Sobolev exponents. Our results are mainly for the case \(\lambda \ge \lambda _1\) and extend results in the literature for \(0< \lambda < \lambda _1\). In the absence of a direct sum decomposition, we use critical point theorems based on a cohomological index and a related pseudo-index.


p-Laplacian problems Critical Hardy–Sobolev exponents Existence Multiplicity Bifurcation Critical point theory Cohomological index Pseudo-index 

Mathematics Subject Classification

Primary 35J92 35B33 Secondary 35J20 


  1. 1.
    Bartolo, P., Benci, V., Fortunato, D.: Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity. Nonlinear Anal. 7(9), 981–1012 (1983)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Benci, Vieri: On critical point theory for indefinite functionals in the presence of symmetries. Trans. Am. Math. Soc. 274(2), 533–572 (1982)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Degiovanni, Marco, Lancelotti, Sergio: Linking over cones and nontrivial solutions for \(p\)-Laplace equations with \(p\)-superlinear nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire 24(6), 907–919 (2007)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Degiovanni, Marco, Lancelotti, Sergio: Linking solutions for \(p\)-Laplace equations with nonlinearity at critical growth. J. Funct. Anal. 256(11), 3643–3659 (2009)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Fadell, Edward R., Rabinowitz, Paul H.: Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems. Invent. Math. 45(2), 139–174 (1978)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Ghoussoub, N., Yuan, C.: Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans. Am. Math. Soc. 352(12), 5703–5743 (2000)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Mosconi, S., Perera, K., Squassina, M., Yang, Y.: The Brezis–Nirenberg problem for the fractional \(p\)-Laplacian. Calc. Var. Partial Differ. Equ. 55(4), 105 (2016)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Perera, Kanishka: Nontrivial critical groups in \(p\)-Laplacian problems via the Yang index. Topol. Methods Nonlinear Anal. 21(2), 301–309 (2003)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Perera, K., Agarwal, R.P., O’Regan, D.: Morse Theoretic Aspects of \(p\)-Laplacian Type Operators. Mathematical Surveys and Monographs, vol. 161. American Mathematical Society, Providence, RI (2010)CrossRefMATHGoogle Scholar
  10. 10.
    Perera, Kanishka, Squassina, Marco, Yang, Yang: Bifurcation and multiplicity results for critical \(p\)-Laplacian problems. Topol. Methods Nonlinear Anal. 47(1), 187–194 (2016)MathSciNetMATHGoogle Scholar
  11. 11.
    Perera, Kanishka, Szulkin, Andrzej: \(p\)-Laplacian problems where the nonlinearity crosses an eigenvalue. Discrete Contin. Dyn. Syst. 13(3), 743–753 (2005)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Rabinowitz, Paul H: Some critical point theorems and applications to semilinear elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5(1), 215–223 (1978)MathSciNetMATHGoogle Scholar
  13. 13.
    Yang, Yang, Perera, Kanishka: \(N\)-Laplacian problems with critical Trudinger-Moser nonlinearities. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16(4), 1123–1138 (2016)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesFlorida Institute of TechnologyMelbourneUSA
  2. 2.Department of Mathematical SciencesTsinghua UniversityBeijingChina

Personalised recommendations