Dual variational methods for a nonlinear Helmholtz system

  • Rainer Mandel
  • Dominic Scheider


This paper considers a pair of coupled nonlinear Helmholtz equations
$$\begin{aligned} {\left\{ \begin{array}{ll} -\,\Delta u - \mu u = a(x) \left( |u|^\frac{p}{2} + b(x) |v|^\frac{p}{2} \right) |u|^{\frac{p}{2} - 2}u,\\ -\,\Delta v - \nu v = a(x) \left( |v|^\frac{p}{2} + b(x) |u|^\frac{p}{2} \right) |v|^{\frac{p}{2} - 2}v \end{array}\right. } \end{aligned}$$
on \(\mathbb {R}^N\) where \(\frac{2(N+1)}{N-1}< p < 2^*\). The existence of nontrivial strong solutions in \(W^{2, p}(\mathbb {R}^N)\) is established using dual variational methods. The focus lies on necessary and sufficient conditions on the parameters deciding whether or not both components of such solutions are nontrivial.


Nonlinear Helmholtz sytem Dual variational methods 

Mathematics Subject Classification

Primary 35J50 Secondary 35J05 


  1. 1.
    Ambrosetti, A., Colorado, E.: Bound and ground states of coupled nonlinear Schrödinger equations. Compt. Rend. Math. 342(7), 453–458 (2006)CrossRefMATHGoogle Scholar
  2. 2.
    Córdoba, A.: Singular integrals, maximal functions and fourier restriction to spheres: the disk multiplier revisited. Adv. Math. 290, 208–235 (2016)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Evéquoz, G.: A dual approach in Orlicz spaces for the nonlinear Helmholtz equation. Zeitschrift für angewandte Mathematik und Physik 66(6), 2995–3015 (2015)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Evéquoz, G.: Existence and asymptotic behavior of standing waves of the nonlinear Helmholtz equation in the plane. arXiv:1606.00788v2 (2016)
  5. 5.
    Evéquoz, G.: Multiple standing waves for the nonlinear Helmholtz equation concentrating in the high frequency limit. Annali di Matematica Pura ed Applicata (1923-) 196(6), 2023–2042 (2017)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Evéquoz, G.: On the periodic and asymptotically periodic nonlinear Helmholtz equation. Nonlinear Anal. Theory Methods Appl. 152, 88–101 (2017)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Evéquoz, G., Weth, T.: Real solutions to the nonlinear Helmholtz equation with local nonlinearity. Arch. Ration. Mech. Anal. 211(2), 359–388 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Evéquoz, G., Weth, T.: Dual variational methods and nonvanishing for the nonlinear Helmholtz equation. Adv. Math. 280, 690–728 (2015)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Evéquoz, G., Weth, T.: Branch continuation inside the essential spectrum for the nonlinear Schrödinger equation. J. Fixed Point Theory Appl. 19(1), 475–502 (2017)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Evéquoz, G., Yeşil,T. : Dual ground state solutions for the critical nonlinear Helmholtz equation. arXiv:1707.00959v1 (2017)
  11. 11.
    Gutiérrez, S.: Non trivial \({L}^q\) solutions to the Ginzburg–Landau equation. Mathematische Annalen 328(1), 1–25 (2004)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Jakszto, M.: Another proof that \({L}^p\)-bounded pointwise convergence implies weak convergence. Real Anal. Exch. 36(2), 479–482 (2010)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Maia, L., Montefusco, E., Pellacci, B.: Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differ. Equ. 229(2), 743–767 (2006)CrossRefMATHGoogle Scholar
  14. 14.
    Mandel, R.: Minimal energy solutions for repulsive nonlinear Schrödinger systems. J. Differ. Equ. 257(2), 450–468 (2014)CrossRefMATHGoogle Scholar
  15. 15.
    Mandel, R.: Minimal energy solutions and infinitely many bifurcating branches for a class of saturated nonlinear Schrödinger systems. Adv. Nonlinear Stud. 16(1), 95–113 (2015)MATHGoogle Scholar
  16. 16.
    Mandel, R.: Minimal energy solutions for cooperative nonlinear Schrödinger systems. Nonlinear Differ. Equ. Appl. NoDEA 22(2), 239–262 (2015)CrossRefMATHGoogle Scholar
  17. 17.
    Mandel, R., Montefusco, E., Pellacci, B.: Oscillating solutions for nonlinear Helmholtz equations. Zeitschrift für angewandte Mathematik und Physik 6, 121 (2017)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, New Jersey (1970)CrossRefMATHGoogle Scholar
  19. 19.
    Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Monographs in harmonic analysis 3, Princeton mathematical series, 43, 2nd edn. Princeton University Press, Princeton (1995)Google Scholar
  20. 20.
    Szulkin, A., Weth, T.: Ground state solutions for some indefinite variational problems. J. Funct. Anal. 257(12), 3802–3822 (2009)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Karlsruhe Institute of TechnologyInstitute for AnalysisKarlsruheGermany

Personalised recommendations