Positive solutions of an elliptic Neumann problem with a sublinear indefinite nonlinearity

  • Uriel Kaufmann
  • Humberto Ramos Quoirin
  • Kenichiro Umezu


Let \(\Omega \subset \mathbb {R}^{N}\) (\(N\ge 1\)) be a bounded and smooth domain and \(a:\Omega \rightarrow \mathbb {R}\) be a sign-changing weight satisfying \(\int _{\Omega }a<0\). We prove the existence of a positive solution \(u_{q}\) for the problem if \(q_{0}<q<1\), for some \(q_{0}=q_{0}(a)>0\). In doing so, we improve the existence result previously established in Kaufmann et al. (J Differ Equ 263:4481–4502, 2017). In addition, we provide the asymptotic behavior of \(u_{q}\) as \(q\rightarrow 1^{-}\). When \(\Omega \) is a ball and a is radial, we give some explicit conditions on q and a ensuring the existence of a positive solution of \((P_{a,q})\). We also obtain some properties of the set of q’s such that \((P_{a,q})\) admits a solution which is positive on \(\overline{\Omega }\). Finally, we present some results on nonnegative solutions having dead cores. Our approach combines bifurcation techniques, a priori bounds and the sub-supersolution method.


Elliptic problem Indefinite Sublinear Positive solution 

Mathematics Subject Classification

35J25 35J61 


  1. 1.
    Alama, S.: Semilinear elliptic equations with sublinear indefinite nonlinearities. Adv. Differ. Equ. 4, 813–842 (1999)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122, 519–543 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bandle, C., Pozio, M., Tesei, A.: The asymptotic behavior of the solutions of degenerate parabolic equations. Trans. Am. Math. Soc. 303, 487–501 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bandle, C., Pozio, A.M., Tesei, A.: Existence and uniqueness of solutions of nonlinear Neumann problems. Math. Z. 199, 257–278 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Brown, K.J., Hess, P.: Stability and uniqueness of positive solutions for a semi-linear elliptic boundary value problem. Differ. Integral Equ. 3(2), 201–207 (1990)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Cuesta, M., Takáč, P.: A strong comparison principle for positive solutions of degenerate elliptic equations. Differ. Integral Equ. 13, 721–746 (2000)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Delgado, M., Suárez, A.: On the uniqueness of positive solution of an elliptic equation. Appl. Math. Lett. 18, 1089–1093 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Friedman, A., Phillips, D.: The free boundary of a semilinear elliptic equation. Trans. Am. Math. Soc. 282, 153–182 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    García-Melián, J., Rossi, J.D., Sabina de Lis, J.C.: A bifurcation problem governed by the boundary condition II. Proc. Lond. Math. Soc. 94, 1–25 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Godoy, T., Kaufmann, U.: On strictly positive solutions for some semilinear elliptic problems. NoDEA Nonlinear Differ. Equ. Appl. 20, 779–795 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Godoy, T., Kaufmann, U.: Existence of strictly positive solutions for sublinear elliptic problems in bounded domains. Adv. Nonlinear Stud. 14, 353–359 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gurtin, M.E., MacCamy, R.C.: On the diffusion of biological populations. Math. Biosci. 33, 35–49 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hernández, J., Mancebo, F., Vega, J.: On the linearization of some singular, nonlinear elliptic problems and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 19, 777–813 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jeanjean, L.: Some continuation properties via minimax arguments. Electron. J. Differ. Equ. 2011(48), 1–10 (2011)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Kajikiya, R.: Positive solutions of semilinear elliptic equations with small perturbations. Proc. Am. Math. Soc. 141, 1335–1342 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kaufmann, U., Ramos Quoirin, H., Umezu, K.: Positivity results for indefinite sublinear elliptic problems via a continuity argument. J. Differ. Equ. 263, 4481–4502 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Namba, T.: Density-dependent dispersal and spatial distribution of a population. J. Theor. Biol. 86, 351–363 (1980)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Pozio, M.A., Tesei, A.: Support properties of solution for a class of degenerate parabolic problems. Commun. Partial Differ. Equ. 12, 47–75 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zeidler, E.: Nonlinear Functional Analysis and Its Applications I: Fixed-Point Theorems. Springer, New York (1986)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Uriel Kaufmann
    • 1
  • Humberto Ramos Quoirin
    • 2
  • Kenichiro Umezu
    • 3
  1. 1.FaMAFUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Universidad de Santiago de ChileSantiagoChile
  3. 3.Department of Mathematics, Faculty of EducationIbaraki UniversityMitoJapan

Personalised recommendations