Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Nonlinear Differential Equations and Applications NoDEA
  3. Article

Precise homogenization rates for the Fučík spectrum

  • Published: 07 June 2017
  • Volume 24, article number 31, (2017)
  • Cite this article
Download PDF
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript
Precise homogenization rates for the Fučík spectrum
Download PDF
  • Ariel M. Salort1,2 
  • 100 Accesses

  • 3 Citations

  • Explore all metrics

Abstract

Given a bounded domain \(\Omega \) in \(\mathbb {R}^N\), \(N\ge 1\) we study the homogenization of the weighted Fučík spectrum with Dirichlet boundary conditions. In the case of periodic weight functions, precise asymptotic rates of the curves are obtained.

Article PDF

Download to read the full article text

Similar content being viewed by others

On Spectral Approximations of Unbounded Operators

Article Open access 02 May 2019

Variational estimates for discrete operators modeled on multi-dimensional polynomial subsets of primes

Article Open access 16 November 2018

Nonuniformly elliptic Schauder theory

Article Open access 27 September 2023
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Alif, M., Gossez, J.-P.: On the Fučík spectrum with indefinite weights. Differ. Integral Equ. 14(12), 1511–1530 (2001)

    MATH  Google Scholar 

  2. Arias, M., Campos, J.: Fučik spectrum of a singular Sturm–Liouville problem. Nonlinear Anal. 27(6), 679–697 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arias, M., Campos, J., Cuesta, M., Gossez, J.-P.: An asymmetric Neumann problem with weights. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(2), 267–280 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Azorero, J.G., Peral Alonso, I.: Comportement asymptotique des valeurs propres du \(p\)-Laplacien. C. R. Acad. Sci Paris Sér. I Math. 307(2), 75–78 (1988)

    MathSciNet  MATH  Google Scholar 

  5. Brown, B.M., Reichel, W.: Computing eigenvalues and Fučík-spectrum of the radially symmetric \(p\)-Laplacian. J. Comput. Appl. Math. 148(1), 183–211 (2002) (on the occasion of the 65th birthday of Professor Michael Eastham)

  6. Conti, M., Terracini, S., Verzini, G.: On a class of optimal partition problems related to the Fučík spectrum and to the monotonicity formulae. Calc. Var. Partial Differ. Equ. 22(1), 45–72 (2005)

    Article  MATH  Google Scholar 

  7. Dancer, E.N.: On the Dirichlet problem for weakly non-linear elliptic partial differential equations. Proc. R. Soc. Edinb. Sect. A 76(4), 283–300 (1976/77)

  8. de Figueiredo, D.G., Gossez, J.-P.: On the first curve of the Fučík spectrum of an elliptic operator. Differ. Integral Equ. 7(5), 1285–1302 (1994)

    MATH  Google Scholar 

  9. del Pino, M., Drábek, P., Manásevich, R.: The Fredholm alternative at the first eigenvalue for the one-dimensional \(p\)-Laplacian. J. Differ. Equ. 151(2), 386–419 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Drábek, P.: Solvability and bifurcations of nonlinear equations. In: Pitman Research Notes in Mathematics Series, vol. 264, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York (1992)

  11. Fernández Bonder, J., Pinasco, J.P., Salort, A.M.: Eigenvalue homogenization for quasilinear elliptic equations with various boundary conditions. Electron J. Differ. Equ. 2016(30), 1–15 (2016)

  12. Fernández Bonder, J., Pinasco, J.P., Salort, A.M.: Homogenization of Fučík eigencurves Mediterr. J. Math. 14, 90. doi:10.1007/s00009-017-0890-1

  13. Fučík, S., Kufner, A.: Nonlinear Differential Equations, Studies in Applied Mechanics, vol. 2. Elsevier Scientific Publishing Co., Amsterdam-New York (1980)

    MATH  Google Scholar 

  14. Leadi, L., Marcos, A.: On the first curve in the Fučik spectrum with weights for a mixed \(p\)-Laplacian. Int. J. Math. Math. Sci. (2007) Art. ID 57607, 13

  15. Li, W., Yan, P.: Various half-eigenvalues of scalar \(p\)-Laplacian with indefinite integrable weights. Abstr. Appl. Anal. (2009) Art. ID 109757, 27

  16. Pinasco, J.P., Commun, A.M.: Salort, Asymptotic behavior of the curves in the fucik spectrum. Contemp. Math. (2015) (to appear)

  17. Pinasco, J.P., Salort, A.M.: Quasilinear eigenvalues. Rev. Un. Mat. Argent. 56(1), 1–25 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Pinasco, J.P., Salort, A.M.: Eigenvalue homogenisation problem with indefinite weights. Bull. Aust. Math. Soc. 93(1), 113–127 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Reichel, W., Walter, W.: Radial solutions of equations and inequalities involving the \(p\)-Laplacian. J. Inequal. Appl. 1(1), 47–71 (1997)

    MathSciNet  MATH  Google Scholar 

  20. Rynne, B.P.: The Fučík spectrum of general Sturm–Liouville problems. J. Differ. Equ. 161(1), 87–109 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Salort, A.M.: Convergence rates in a weighted Fuc̆ik problem. Adv. Nonlinear Stud. 14(2), 427–443 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Departamento de Matemática, FCEN - Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I (1428) Av. Cantilo s/n, Buenos Aires, Argentina

    Ariel M. Salort

  2. IMAS - CONICET, Buenos Aires, Argentina

    Ariel M. Salort

Authors
  1. Ariel M. Salort
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Ariel M. Salort.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salort, A.M. Precise homogenization rates for the Fučík spectrum. Nonlinear Differ. Equ. Appl. 24, 31 (2017). https://doi.org/10.1007/s00030-017-0452-z

Download citation

  • Received: 28 June 2016

  • Accepted: 10 May 2017

  • Published: 07 June 2017

  • DOI: https://doi.org/10.1007/s00030-017-0452-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Mathematics Subject Classification

  • 35B27
  • 35P15
  • 35P30
  • 34A08

Keywords

  • Eigenvalue homogenization
  • Nonlinear eigenvalues
  • Order of convergence
  • p-Laplacian
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

65.108.231.39

Not affiliated

Springer Nature

© 2024 Springer Nature