A singular elliptic equation with natural growth in the gradient and a variable exponent

  • José Carmona
  • Pedro J. Martínez-Aparicio
  • Julio D. RossiEmail author


In this paper we consider singular quasilinear elliptic equations with quadratic gradient and a singular term with a variable exponent
$$\begin{cases} -\Delta u + \frac{|{\nabla}u|^2}{u^{\gamma(x)}} = f & {\rm in} \, \Omega \\ u = 0 & {\rm on} \, \partial \Omega \end{cases}$$
Here \({\Omega}\) is an open bounded set of \({\mathbb{R}^N}\), \({\gamma(x)}\) is a positive continuous function and f is positive function that belongs to a certain Lebesgue space. We show, among other results, that there exists a solution in the natural energy space \({H^1_0 (\Omega)}\) to this problem when \({\gamma (x)}\) is strictly less than 2 in a strip around the boundary; while there is no solution in the energy space when there exists \({\Gamma \subset \partial \Omega}\) with \({|\Gamma|_{N-1} > 0}\) such that \({\gamma(x) > 2}\) on \({\Gamma}\). Moreover, since we work by approximation we can analyze the behavior of the approximated solutions \({u_n}\) in the case in which there is no solution in \({H_0^1(\Omega)}\).


Nonlinear elliptic equations Singular natural growth gradient terms Positive solutions Variable exponent 

Mathematics Subject Classification

35A01 35B09 35B45 35D30 35J25 35J60 35J75 


  1. 1.
    Arcoya, D., Barile, S., Martínez-Aparicio, P.J.: Singular quasilinear equations with quadratic growth in the gradient without sign condition. J. Math. Anal. Appl. 350, 401–408 (2009)Google Scholar
  2. 2.
    Arcoya D., Carmona J., Leonori T., Martínez-Aparicio P.J., Orsina L., Petitta F.: Existence and nonexistence of solutions for singular quadratic quasilinear equations. J. Differ. Equ. 246, 4006–4042 (2009)zbMATHCrossRefGoogle Scholar
  3. 3.
    Arcoya D., Carmona J., Martínez-Aparicio P.J.: Elliptic obstacle problems with natural growth on the gradient and singular nonlinear terms. Adv. Nonlinear Stud. 7, 299–317 (2007)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Arcoya D., Martínez-Aparicio P.J.: Quasilinear equations with natural growth. Rev. Mat. Iberoam. 24, 597–616 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Arcoya, D., Segura de León, S.: Uniqueness of solutions for some elliptic equations with a quadratic gradient term. ESAIM Control Optim. Calc. Var. 10(2), 327–336 (2010)Google Scholar
  6. 6.
    Bensoussan A., Boccardo L., Murat F.: On a nonlinear P.D.E. having natural growth terms and unbounded solutions. Ann. Inst. Henri Poincaré Anal. Non Linéaire 5, 347–364 (1988)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Boccardo L., Gallouët T.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169 (1989)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Boccardo L., Gallouët T.: Strongly nonlinear elliptic equations having natural growth terms and \({L^1}\) data. Nonlinear Anal. 19, 573–579 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Boccardo L.: Problems with singular and quadratic gradient lower order terms. ESAIM Control Optim. Calc. Var. 14, 411–426 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Boccardo, L., Gallouët, T., Murat, F.: A unified presentation of two existence results for problems with natural growth. In: Progress in Partial Differential Equations: The Metz Surveys, vol. 2, pp. 127–137 (1992) (Pitman Research Notes in Mathematics Series, vol. 296, Longman Science and Technology, Harlow, 1993)Google Scholar
  11. 11.
    Boccardo L., Murat F.: Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Anal. 19, 581–597 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Boccardo L., Murat F., Puel J.-P.: Existence de solutions non bornees pour certaines équations quasi-linéaires. Portugaliae Math. 41, 507–534 (1982)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Boccardo L., Murat F., Puel J.-P.: \({L^\infty}\) estimate for some nonlinear elliptic partial differential equations and application to an existence result. SIAM J. Math. Anal. 23, 326–333 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Giachetti D., Murat F.: An elliptic problem with a lower order term having singular behaviour. Boll. Unione Mat. Ital. (9) 2(2), 349–370 (2009)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Leray J., Lions J.L.: Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty–Browder. Bull. Soc. Math. France 93, 97–107 (1965)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Martínez-Aparicio P.J.: Dirichlet problems with quadratic gradient. Boll. Unione Mat. Ital. (9) 2(3), 559–574 (2009)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Martínez-Aparicio P.J., Petitta F.: Parabolic equations with nonlinear singularities. Nonlinear Anal. 74(1), 114–131 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Stampacchia, G.: Equations Élliptiques du Second Ordre à Coefficients Discontinus, vol. 35.45, p. 326. Les Presses de l’Université de Montréal, Montreal (1966)Google Scholar
  19. 19.
    Zhou W., Wei X., Qin X.: Nonexistence of solutions for singular elliptic equations with a quadratic gradient term. Nonlinear Anal. 75, 5845–5850 (2012)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • José Carmona
    • 1
  • Pedro J. Martínez-Aparicio
    • 2
  • Julio D. Rossi
    • 3
    Email author
  1. 1.Departamento de MatemáticasUniversidad de AlmeríaAlmeríaSpain
  2. 2.Departamento de Matemática Aplicada y Estadística, Campus Alfonso XIIIUniversidad Politécnica de CartagenaMurciaSpain
  3. 3.Departamento de MatemáticaFCEyN UBA, Ciudad UniversitariaBuenos AiresArgentina

Personalised recommendations