Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Nonlinear Differential Equations and Applications NoDEA
  3. Article
The Mather problem for lower semicontinuous Lagrangians
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Liouville type theorems and Hessian estimates for special Lagrangian equations

08 July 2022

Qi Ding

An Optimal Liouville Theorem for the Linear Heat Equation with a Nonlinear Boundary Condition

31 October 2020

Pavol Quittner

Positive Solutions of Transport Equations and Classical Nonuniqueness of Characteristic curves

08 March 2021

Elia Brué, Maria Colombo & Camillo De Lellis

On the Hölder regularity for solutions of integro-differential equations like the anisotropic fractional Laplacian

12 March 2021

E. B. dos Santos & R. Leitão

On mixed local-nonlocal operators with $$(\alpha , \beta )$$ ( α , β ) -Neumann conditions

27 May 2022

Dimitri Mugnai & Edoardo Proietti Lippi

Lipschitz regularity for viscosity solutions to parabolic $${\varvec{p(x,t)}}$$ p ( x , t ) -Laplacian equations on Riemannian manifolds

06 June 2018

Soojung Kim

Harnack Inequality for Mixed Local and Nonlocal Parabolic p-Laplace Equations

02 February 2023

Bin Shang & Chao Zhang

Improved regularity for the parabolic normalized p-Laplace equation

15 August 2022

Pêdra D. S. Andrade & Makson S. Santos

On the second boundary value problem for a class of fully nonlinear flows II

07 June 2018

Juanjuan Chen, Rongli Huang & Yunhua Ye

Download PDF
  • Published: 01 August 2013

The Mather problem for lower semicontinuous Lagrangians

  • Diogo A. Gomes1,2 &
  • Gabriele Terrone1 

Nonlinear Differential Equations and Applications NoDEA volume 21, pages 167–217 (2014)Cite this article

  • 222 Accesses

  • 1 Citations

  • Metrics details

Abstract

In this paper we develop the Aubry-Mather theory for Lagrangians in which the potential energy can be discontinuous. Namely we assume that the Lagrangian is lower semicontinuous in the state variable, piecewise smooth with a (smooth) discontinuity surface, as well as coercive and convex in the velocity. We establish existence of Mather measures, various approximation results, partial regularity of viscosity solutions away from the singularity, invariance by the Euler–Lagrange flow away from the singular set, and further jump conditions that correspond to conservation of energy and tangential momentum across the discontinuity.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Abbreviations

\({\{e_i\}_{i=1}^N}\) :

The canonical basis of \({\mathbb{R}^N}\)

x i :

The i-th component of a vector \({x \in \mathbb{R}^N}\)

|x|:

The norm of a vector \({x \in \mathbb{R}^N}\)

[x, y]:

The line segment \({\{tx + (1 - t)y, t \in [0,1]\}, x, y \in \mathbb{R}^N}\)

\({\frac{\partial}{\partial x_i} \psi = \partial_{x_i} \psi}\) :

The partial derivative of the function \({\psi}\) with respect to the variable x i

\({D_x \psi}\) :

Gradient of the function \({\psi}\) with respect to x, that is \({(\partial_{x_1} \psi, \ldots, \partial_{x_N} \psi)}\)

\({\dot x(t), \ddot x(t)}\) :

The first and second derivative of a function \({x: I \subset \mathbb{R} \rightarrow \mathbb{R}^N}\)

\({|\psi|_\infty}\) :

The \({L^{\infty}}\) -norm of a function \({\psi}\)

\({{\bar{\Omega}}}\) :

Closure of an open set \({\Omega \subset \mathbb{R}^N}\)

\({\partial \Omega}\) :

Boundary of an open set \({\Omega \subset \mathbb{R}^N}\)

B(x, r):

The Euclidean ball in \({\mathbb{R}^N}\) of radius r > 0 around x

\({\Omega_\delta}\) :

For any open set \({\Omega \subset \mathbb{R}^N}\) , any \({\delta > 0}\) , the set \({\{x \in \mathbb{R}^N| {\rm dist}(x, \Omega) < \delta \}}\)

T x M :

The tangent space of a smooth manifold M at the point \({x \in M}\)

\({\delta_{x_0}}\) :

The Dirac mass concentrated at x 0

\({\mu_{X}(x)}\) :

The projection on X of a measure \({\mu(x,y)}\) on \({X \times Y}\)

〚\({{\ r(t)}_{t_0}}\)〛:

The jump of the function \({r: I \subset \mathbb{R}\rightarrow \mathbb{R}}\) at t 0, that is \({\lim_{t \rightarrow t_0^+}r(t) - \lim_{t \rightarrow t_0^-}r(t)}\)

References

  1. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Systems and Control: Foundations and Applications. Birkhäuser Boston Inc., Boston (1997) (With appendices by Maurizio Falcone and Pierpaolo Soravia)

  2. Barles, G.: Solutions de viscosité des équations de Hamilton–Jacobi. Mathématiques and Applications (Berlin) [Mathematics and Applications], vol. 17. Springer, Paris (1994)

  3. Barles, G., Briani, A., Chasseigne, E.: A Bellman approach for two-domains optimal control problems in \({{\mathbb{R}}^n}\) . COCV.http://hal.archives-ouvertes.fr/hal-00652406

  4. Biryuk A., Gomes D.A.: An introduction to the Aubry-Mather theory. São Paulo J. Math. Sci. 4(1), 17–63 (2010)

    MATH  MathSciNet  Google Scholar 

  5. Bolza, O.: Lectures on the Calculus of Variations, 2nd edn. Chelsea Publishing Co., New York (1961)

  6. Briani, A., Davini, A.: Monge solutions for discontinuous Hamiltonians. ESAIM Control Optim. Calc. Var. 11(2), 229–251 (2005, electronic)

  7. Caffarelli, L., Crandall, M.G., Kocan, M., Swie ̦ch, A.: On viscosity solutions of fully nonlinear equations with measurable ingredients. Commun. Pure Appl. Math. 49(4), 365–397 (1996)

  8. Camilli F.: An Hopf-Lax formula for a class of measurable Hamilton–Jacobi equations. Nonlinear Anal. 57(2), 265–286 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Camilli F., Siconolfi A.: Time-dependent measurable Hamilton–Jacobi equations. Commun. Partial Differ. Equ. 30(4–6), 813–847 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dal Maso G., Frankowska H.: Autonomous integral functionals with discontinuous nonconvex integrands: Lipschitz regularity of minimizers, DuBois-Reymond necessary conditions, and Hamilton–Jacobi equations. Appl. Math. Optim. 48(1), 39–66 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Davini A.: Bolza problems with discontinuous Lagrangians and Lipschitz-continuity of the value function. SIAM J. Control Optim. 46(5), 1897–1921 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Evans, L.C.: Weak Convergence Methods for Nonlinear Partial Differential Equations. CBMS Regional Conference Series in Mathematics, vol. 74. Published for the Conference Board of the Mathematical Sciences, Washington, DC (1990)

  13. Evans L.C., Gomes D.: Effective Hamiltonians and averaging for Hamiltonian dynamics. I. Arch. Ration. Mech. Anal. 157(1), 1–33 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fathi A., Siconolfi A.: Existence of C 1 critical subsolutions of the Hamilton–Jacobi equation. Invent. Math. 155(2), 363–388 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fathi A., Siconolfi A.: PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians. Calc. Var. Partial Differ. Equ. 22(2), 185–228 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Figalli A., Mandorino V.: Fine properties of minimizers of mechanical lagrangians with sobolev potentials. Discrete Contin. Dyn. Syst. Ser. A 31(4), 1325–1346 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gomes, D.: Viscosity solutions of Hamilton–Jacobi equations. Publicações Matemáticas do IMPA. [IMPA Mathematical Publications]. Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2009. 27o Colóquio Brasileiro de Matemática. [27th Brazilian Mathematics Colloquium]

  18. Mañé R.: On the minimizing measures of Lagrangian dynamical systems. Nonlinearity 5(3), 623–638 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mather J.N.: Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z 207(2), 169–207 (1991)

    MATH  MathSciNet  Google Scholar 

  20. Newcomb R.T., Su J.: Eikonal equations with discontinuities. Differ. Integral Equ. 8(8), 1947–1960 (1995)

    MATH  MathSciNet  Google Scholar 

  21. Soner, H.M.: Optimal control with state-space constraint I & II. SIAM J. Control Optim., 24(3 & 6): 552–561, 1110–1122 (1986)

    Google Scholar 

  22. Soravia P.: Boundary value problems for Hamilton–Jacobi equations with discontinuous Lagrangian. Indiana Univ. Math. J 51(2), 451–477 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Soravia, P.: Degenerate eikonal equations with discontinuous refraction index. ESAIM Control Optim. Calc. Var. 12(2), 216–230 (2006, electronic)

  24. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence (2003)

Download references

Author information

Authors and Affiliations

  1. Departamento de Matemática Center for Mathematical Analysis, Geometry and Dynamical Systems, Instituto Superior Técnico, 1049-001, Lisboa, Portugal

    Diogo A. Gomes & Gabriele Terrone

  2. CSMSE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia

    Diogo A. Gomes

Authors
  1. Diogo A. Gomes
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Gabriele Terrone
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Gabriele Terrone.

Additional information

D. Gomes was partially supported by CAMGSD-LARSys through FCT-Portugal and by grants PTDC/MAT/114397/2009, UTAustin/MAT/0057/2008, and UTA-CMU/MAT/ 0007/2009.

G. Terrone was supported by the UTAustin-Portugal partnership through the FCT post-doctoral fellowship SFRH/BPD/40338/2007, CAMGSD-LARSys through FCT Program POCTI - FEDER and by grants PTDC/MAT/114397/2009, UTAustin/MAT/0057/2008, and UTA-CMU/MAT/0007/2009.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gomes, D.A., Terrone, G. The Mather problem for lower semicontinuous Lagrangians. Nonlinear Differ. Equ. Appl. 21, 167–217 (2014). https://doi.org/10.1007/s00030-013-0243-0

Download citation

  • Received: 02 March 2012

  • Accepted: 15 July 2013

  • Published: 01 August 2013

  • Issue Date: April 2014

  • DOI: https://doi.org/10.1007/s00030-013-0243-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Mathematics Subject Classification (2010)

  • Primary 35F21
  • 37J50
  • Secondary 35D40
  • 35R05
  • 49K20

Keywords

  • Discontinuous Lagrangians
  • Action minimizing measures
  • Hamilton–Jacobi equations
  • Viscosity solutions
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.239.6.58

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.