Saddle solutions for bistable symmetric semilinear elliptic equations

Article

Abstract

This paper concerns the existence and asymptotic characterization of saddle solutions in \({\mathbb {R}^{3}}\) for semilinear elliptic equations of the form
$$-\Delta u + W'(u) = 0,\quad (x, y, z) \in {\mathbb {R}^{3}} \qquad\qquad\qquad (0.1)$$
where \({W \in \mathcal{C}^{3}(\mathbb {R})}\) is a double well symmetric potential, i.e. it satisfies W(−s) =  W(s) for \({s \in \mathbb {R},W(s) > 0}\) for \({s \in (-1,1)}\) , \({W(\pm 1) = 0}\) and \({W''(\pm 1) > 0}\) . Denoted with \({\theta_{2}}\) the saddle planar solution of (0.1), we show the existence of a unique solution \({\theta_{3} \in {\mathcal{C}^{2}}(\mathbb {R}^{3})}\) which is odd with respect to each variable, symmetric with respect to the diagonal planes, verifies \({0 < \theta_{3}(x,y,z) < 1}\) for x, y, z >  0 and \({\theta_{3}(x, y, z) \to_{z \to + \infty} \theta_{2}(x, y)}\) uniformly with respect to \({(x, y) \in \mathbb {R}^{2}}\) .

Mathematics Subject Classification (2010)

35J60 35B05 35B40 35J20 34C37 

Keywords

Elliptic equations Variational methods Entire solutions 

References

  1. 1.
    Alama S., Bronsard L., Gui C.: Stationary layered solutions in \({\mathbb {R}^{2}}\) for an Allen–Cahn system with multiple well potential. Calc. Var. Partial Diff. Equ. 5, 359–390 (1997)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Alberti, G., Ambrosio, L., Cabr, X.: On a long-standing conjecture of E. De Giorgi: Symmetry in 3D for general nonlinearities and a local minimality property. Acta Appl. Math. 65(1–3), 9–33 (2001)Google Scholar
  3. 3.
    Alessio F., Calamai A., Montecchiari P.: Saddle-type solutions for a class of semilinear elliptic equations. Adv. Diff. Equ. 12, 361–380 (2007)MathSciNetMATHGoogle Scholar
  4. 4.
    Alessio F., Montecchiari P.: Entire solutions in R 2 for a class of Allen–Cahn equations. ESAIM: COCV 11, 633–672 (2005)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Alessio F., Montecchiari P.: Multiplicity results for a class of almost periodic Allen-Cahn type equations. Adv. Nonlinear Stud. 5, 515–549 (2005)MathSciNetMATHGoogle Scholar
  6. 6.
    Alessio F., Montecchiari P.: Brake orbits type solutions to some class of semilinear elliptic equations. Calc. Var. Partial Diff. Equ. 30, 51–83 (2007)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Alessio, F., Montecchiari, P.: Layered solutions with multiple asymptotes for non autonomous AllenCahn equations in \({\mathbb {R}^{3}}\). Calc. Var. PDE. doi: 10.1007/s00526-012-0495-2
  8. 8.
    Ambrosio L., Cabre X.: Entire solutions of semilinear elliptic equations in \({\mathbb {R}^{3}}\) and a conjecture of De Giorgi. J. Am. Math. Soc. 13(4), 725–739 (2000)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Barlow M.T., Bass R.F., Gui C.: The Liouville property and a conjecture of De Giorgi. Comm. Pure Appl. Math. 53(8), 1007–1038 (2000)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Berestycki H., Caffarelli L. A., Nirenberg L.: Monotonicity for elliptic equations in unbounded Lipschitz domains. Comm. Pure Appl. Math. 50(11), 1089–1111 (1997)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Berestycki H., Hamel F., Monneau R.: One-dimensional symmetry for some bounded entire solutions of some elliptic equations. Duke Math. J. 103(3), 375–396 (2000)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, Berlin (2011)Google Scholar
  13. 13.
    Cabré X., Terra J.: Saddle-shaped solutions of bistable diffusion equations in all of \({\mathbb {R}^{2m}}\) . J. Eur. Math. Soc. (JEMS) 11(4), 819–943 (2009)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Cabré X., Terra J.: Qualitative properties of saddle-shaped solutions to bistable diffusion equations. Commun. Partial Diff. Equ. 35, 1923–1957 (2010)MATHCrossRefGoogle Scholar
  15. 15.
    Dang H., Fife P.C., Peletier L.A.: Saddle solutions of the bistable diffusion equation. Z. Angew. Math. Phys. 43(6), 984–998 (1992)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    De Giorgi, E (eds.): Convergence problems for functionals and operators. In: Proceedings of International Meeting on Recent Methods in Nonlinear Analysis, Rome, (1978)Google Scholar
  17. 17.
    del Pino M., Kowalczyk M., Wei J.: A counterexample to a conjecture by De Giorgi in large dimensions. C. R. Acad. Sci. Paris, Ser. I 346, 1261–1266 (2008)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    del Pino, M., Kowalczyk, M., Wei, J.: On De Giorgi conjecture in dimension \({N \geq 9}\) . Ann. Math. 174(2), 1485–1569 (2011)Google Scholar
  19. 19.
    del Pino, M.: New entire solutions to some classical semilinear elliptic problems. In: Proceedings of the International Congress of Mathematicians ICM (2010)Google Scholar
  20. 20.
    del Pino M., Kowalczyk M., Pacard F., Wei J.: Multiple-end solutions to the Allen–Cahn equation in R 2. J. Funct. Anal. 258(2), 458–503 (2010)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    del Pino M., Kowalczyk M., Pacard F., Wei J.: The Toda system and multiple-end solutions of autonomous planar elliptic problems. Adv. Math. 224(4), 1462–1516 (2010)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    del Pino, M., Kowalczyk, M., Wei, J.: Entire solutions of the Allen Cahn equation and complete embedded minimal surfaces of finite total curvature. Rev. Union Math. Arg. 50(2), 95–107 (2009)Google Scholar
  23. 23.
    del Pino M., Kowalczyk M., Wei J.: Entire solutions of the Allen–Cahn equation and complete embedded minimal surfaces. Revista de la Unión Matemática Argentina 50(2), 95–107 (2009)MathSciNetMATHGoogle Scholar
  24. 24.
    Farina A.: Symmetry for solutions of semilinear elliptic equations in \({\mathbb {R}^{N}}\) and related conjectures. Ricerche di Matematica (in memory of Ennio De Giorgi) 48, 129–154 (1999)MathSciNetMATHGoogle Scholar
  25. 25.
    Farina, A., Sciunzi, B., Valdinoci, E.: Bernstein and De Giorgi type problems: new results via a geometric approach. Ann. Sci. Norm. Super. Pisa Cl. Sci. 5, 7 (2008)Google Scholar
  26. 26.
    Farina, A., Valdinoci, E.: The state of the art for a conjecture of de Giorgi and related problems. In: Recent progress on reaction-diffusion systems and viscosity solutions, Hackensack, NJ. World Scientific, Singapore, pp. 74–96 (2009)Google Scholar
  27. 27.
    Farina A., Valdinoci E.: 1D symmetry for solutions of semilinear and quasilinear elliptic equations. Trans. Am. Math. Soc. 363, 579–609 (2011)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Farina, A., Valdinoci, E.: Some results on Minimizers and stable solutions of a variational problem. Ergodic theory and dynamical systems (to appear)Google Scholar
  29. 29.
    Ghoussoub N., Gui C.: On a conjecture of De Giorgi and some related problems. Math. Ann. 311, 481–491 (1998)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Gui C.: Hamiltonian identities for elliptic partial differential equations. J. Funct. Anal. 254(4), 904–933 (2008)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Gui, C.: Symmetry of some entire solutions to the Allen–Cahn equation in two dimensions. J. Diff. Equ. 252(11), 5853–5874 (2012)Google Scholar
  32. 32.
    Gui C., Schatzman M.: Symmetric quadruple phase transitions. Indiana Univ. Math. J. 57(2), 781–836 (2008)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Kowalczyk, M., Liu, Y.: Nondegeneracy of the saddle solution of the Allen–Cahn equation. Proc. AMS 139(1), 4319–4329 (2011)Google Scholar
  34. 34.
    Kowalczyk, M., Liu, Y., Pacard, F.: The space of 4-ended solutions to the Allen–Cahn equation on the plane. Ann. IHP Analise Nonlinearire, 29(5), 761–781 (2012)Google Scholar
  35. 35.
    Kowalczyk, M., Liu, Y., Pacard, F.: The Classification of Four end solutions to the Allen-Cahn equation on the plane (2011) (preprint)Google Scholar
  36. 36.
    Rabinowitz P.H.: Solutions of heteroclinic type for some classes of semilinear elliptic partial differential equations. J. Math. Sci. Univ. Tokio 1, 525–550 (1994)MathSciNetMATHGoogle Scholar
  37. 37.
    Rabinowitz, P.H., Stredulinsky, E.: Extensions of Moser Bangert theory: locally minimal solutions. In: Progress in Nonlinear Differential Equations and Their applications, vol. 81, Birkhäuser, Basel (2011)Google Scholar
  38. 38.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics IV: Analysis of Operators. Academic Press, New York (1978)Google Scholar
  39. 39.
    Savin, O.: Phase transition: regularity of flat level sets. Ann. Math. 169, 4778 (2009)Google Scholar
  40. 40.
    Savin, O., Sciunzi, B., Valdinoci, E.: Flat level set regularity of p-Laplace phase transitions. In: Memoirs of the American Mathematical Society, vol. 182 (2006)Google Scholar
  41. 41.
    Schatzman M.: On the stability of the saddle solution of Allen–Cahn’s equation. Proc. R. Soc. Edinburgh Sect. A 125(6), 1241–1275 (1995)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Industriale e Scienze MatematicheUniversità Politecnica delle MarcheAnconaItaly

Personalised recommendations