Global stability of the Armstrong-Frederick model with periodic biaxial inputs

Article
  • 50 Downloads

Abstract.

The paper is concerned with the study of plasticity models described by differential equations with stop and play operators. We suggest sufficient conditions for the global stability of a unique periodic solution for the scalar models and for the vector models with biaxial inputs of a particular form, namely the sum of a uniaxial function and a constant term. For another class of simple biaxial inputs, we present an example of the existence of unstable periodic solutions.

2000 Mathematics Subject Classification:

47J40 74C05 

Keywords:

Hysteresis ratchetting plasticity model periodic solution global stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser Verlag, Basel 2006

Authors and Affiliations

  1. 1.Zentrum MathematikTechnische Universität MünchenGarching b. MünchenGermany
  2. 2.Department of Applied MathematicsUniversity College CorkCorkIreland

Personalised recommendations