Skip to main content
Log in

Telescopers for differential forms with one parameter

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Telescopers for a function are linear differential (resp. difference) operators annihilating the definite integral (resp. definite sum) of this function. They play a key role in Wilf–Zeilberger theory and algorithms for computing them have been extensively studied in the past 30 years. In this paper, we introduce the notion of telescopers for differential forms with D-finite function coefficients. These telescopers appear in several areas of mathematics, for instance parametrized differential Galois theory and mirror symmetry. We give a sufficient and necessary condition for the existence of telescopers for a differential form and describe a method to compute them if they exist. Algorithms for verifying this condition are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramov, S.A.: When does Zeilberger’s algorithm succeed? Adv. Appl. Math. 30(3), 424–441 (2003)

    Article  MathSciNet  Google Scholar 

  2. Abramov, S.A., Le, H.Q.: A criterion for the applicability of Zeilberger’s algorithm to rational functions. Discrete Math. 259(1–3), 1–17 (2002)

    Article  MathSciNet  Google Scholar 

  3. Almkvist, G., Zeilberger, D.: The method of differentiating under the integral sign. J. Symb. Comput. 10(6), 571–591 (1990)

    Article  MathSciNet  Google Scholar 

  4. Beke, E.: Die Irreducibilität der homogenen linearen Differentialgleichungen. Math. Ann. 45(2), 278–294 (1894)

    Article  MathSciNet  Google Scholar 

  5. Bernšteĭn, I.N.: Modules over a ring of differential operators. An investigation of the fundamental solutions of equations with constant coefficients. Funkcional Anal. i Priložen. 5(2), 1–16 (1971)

    MathSciNet  Google Scholar 

  6. Björk, J.-E.: Rings of differential operators. In: North-Holland Mathematical Library, vol. 21. North-Holland Publishing Co., Amsterdam (1979)

  7. Bostan, A., Chen, S., Chyzak, F., Li, Z.: Complexity of creative telescoping for bivariate rational functions. In: ISSAC 2010—Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, pp. 203–210. ACM, New York (2010)

  8. Bostan, A., Chen, S., Chyzak, F., Li, Z., Xin, G.: Hermite reduction and creative telescoping for hyperexponential functions. In: ISSAC 2013—Proceedings of the 2013 International Symposium on Symbolic and Algebraic Computation, pp. 77–84. ACM, New York (2013)

  9. Bostan, A., Chyzak, F., Lairez, P., Salvy, B.: Generalized Hermite reduction, creative telescoping and definite integration of D-finite functions. In: ISSAC 2018—Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation, pp. 95–102. ACM, New York (2018)

  10. Bostan, A., Lairez, P., Salvy, B.: Creative telescoping for rational functions using the Griffiths–Dwork method. In: ISSAC 2013—Proceedings of the 2013 International Symposium on Symbolic and Algebraic Computation, pp. 93–100. ACM, New York (2013)

  11. Chen, S., Chyzak, F., Feng, R., Fu, G., Li, Z.: On the existence of telescopers for mixed hypergeometric terms. J. Symb. Comput. 68(part 1), 1–26 (2015)

    Article  MathSciNet  Google Scholar 

  12. Chen, S., Feng, R., Li, Z., Singer, M.F.: Parallel telescoping and parameterized Picard–Vessiot theory. In: ISSAC 2014—Proceedings of the 2014 International Symposium on Symbolic and Algebraic Computation, pp. 99–106. ACM, New York (2014)

  13. Chen, S., Feng, R., Ma, P., Singer, M.F.: Separability problems in creative telescoping. In: ISSAC 2021—Proceedings of the 2021 International Symposium on Symbolic and Algebraic Computation, pp. 83–90. ACM, New York (2021)

  14. Chen, S., Hou, Q.-H., Labahn, G., Wang, R.-H.: Existence problem of telescopers: beyond the bivariate case. In: ISSAC 2016—Proceedings of the 2016 International Symposium on Symbolic and Algebraic Computation, pp. 167–174. ACM, New York (2016)

  15. Chen, S., Kauers, M.: Some open problems related to creative telescoping. J. Syst. Sci. Complex. 30(1), 154–172 (2017)

    Article  MathSciNet  Google Scholar 

  16. Chen, S., Kauers, M., Koutschan, C.: Reduction-based creative telescoping for algebraic functions. In: ISSAC 2016—Proceedings of the 2016 International Symposium on Symbolic and Algebraic Computation, pp. 175–182. ACM, New York (2016)

  17. Chen, S., Kauers, M., Li, Z., Zhang, Y.: Apparent singularities of D-finite systems. J. Symb. Comput. 95, 217–237 (2019)

    Article  MathSciNet  Google Scholar 

  18. Chen, S., Kauers, M., Singer, M.F.: Desingularization of ore operators. J. Symb. Comput. 74(C), 617–626 (2016)

    Article  MathSciNet  Google Scholar 

  19. Chen, S., Koutschan, C.: Proof of the Wilf–Zeilberger conjecture for mixed hypergeometric terms. J. Symb. Comput. 93, 133–147 (2019)

    Article  MathSciNet  Google Scholar 

  20. Chen, S., van Hoeij, M., Kauers, M., Koutschan, C.: Reduction-based creative telescoping for fuchsian D-finite functions. J. Symb. Comput. 85, 108–127 (2018)

    Article  MathSciNet  Google Scholar 

  21. Chen, W.Y.C., Hou, Q.-H., Mu, Y.-P.: Applicability of the \(q\)-analogue of Zeilberger’s algorithm. J. Symb. Comput. 39(2), 155–170 (2005)

    Article  MathSciNet  Google Scholar 

  22. Euler, L.: Specimen de constructione aequationum differentialium sine indeterminatarum separatione. Commentarii academiae scientiarum Petropolitanae 6, 168–174 (1733)

  23. Kashiwara, M.: On the holonomic systems of linear differential equations II. Invent. Math. 49(2), 121–135 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  24. Kolchin, E.R.: Differential algebra and algebraic groups. In: Pure and Applied Mathematics, vol. 54. Academic Press, New York (1973)

  25. Koutschan, C.: Advanced applications of the holonomic systems approach. Ph.D thesis, Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz (2009)

  26. Koutschan, C.: Creative telescoping for holonomic functions. In: Computer Algebra in Quantum Field Theory, Texts Monogram Symbol Computer, pp. 171–194. Springer, Vienna (2013)

  27. Lairez, P.: Computing periods of rational integrals. Math. Comput. 85(300), 1719–1752 (2016)

    Article  MathSciNet  Google Scholar 

  28. Lairez, P., Vanhove, P.: Algorithms for minimal Picard–Fuchs operators of Feynman integrals. Lett. Math. Phys. 113(2), 37 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  29. Lang, S.: Algebra, Volume 211 of Graduate Texts in Mathematics, 3rd edn. Springer, New York (2002)

  30. Li, S., Lian, B.H., Yau, S.-T.: Picard–Fuchs equations for relative periods and Abel–Jacobi map for Calabi–Yau hypersurfaces. Am. J. Math. 134(5), 1345–1384 (2012)

    Article  MathSciNet  Google Scholar 

  31. Li, Z., Wang, H.: A criterion for the similarity of length-two elements in a noncommutative PID. J. Syst. Sci. Complex. 24(3), 580–592 (2011)

    Article  MathSciNet  CAS  Google Scholar 

  32. Lipshitz, L.: The diagonal of a \(D\)-finite power series is \(D\)-finite. J. Algebra 113(2), 373–378 (1988)

    Article  MathSciNet  Google Scholar 

  33. Morrison, D.R., Walcher, J.: D-branes and normal functions. Adv. Theor. Math. Phys. 13(2), 553–598 (2009)

    Article  MathSciNet  Google Scholar 

  34. Müller-Stach, S., Weinzierl, S., Zayadeh, R.: Picard–Fuchs equations for Feynman integrals. Commun. Math. Phys. 326(1), 237–249 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  35. Ore, O.: Theory of non-commutative polynomials. Ann. Math. (2) 34(3), 480–508 (1933)

    Article  MathSciNet  Google Scholar 

  36. Petkovšek, M., Wilf, H.S., Zeilberger, D.: \(A=B\). A K Peters Ltd, Wellesley, MA,: With a foreword by Donald E. Knuth, With a Separately Available Computer Disk (1996)

  37. Schwarz, F.: Loewy decomposition of linear differential equations. In: Texts and Monographs in Symbolic Computation. Springer, New York (2012)

  38. Singer, M. F.: Introduction to the Galois theory of linear differential equations. In: Algebraic theory of differential equations, volume 357 of London Mathematical Society Lecture Note Series, pp. 1–82. Cambridge University Press, Cambridge (2009)

  39. van der Poorten, A.: A proof that Euler missed\(\ldots \)Apéry’s proof of the irrationality of \(\zeta (3)\). Math. Intell. 1(4), 195–203 (1978/1979). An informal report

  40. van der Put, M., Singer, M.F.: Galois theory of linear differential equations. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 328. Springer, Berlin (2003)

  41. van Hoeij, M.: Rational solutions of the mixed differential equation and its application to factorization of differential operators. In: Engeler, E., Caviness, B.F., Lakshman, Y.N. (eds) ISSAC 1996—Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation, pp 219–225. ACM (1996)

  42. van Hoeij, M.: Factorization of differential operators with rational functions coefficients. J. Symb. Comput. 24(5), 537–561 (1997)

    Article  MathSciNet  Google Scholar 

  43. Weintraub, S. H.: Differential Forms: Theory and Practice. Elsevier/Academic Press, Amsterdam, 2nd edn (2014). Theory and practice

  44. Wilf, H.S., Zeilberger, D.: Rational functions certify combinatorial identities. J. Am. Math. Soc. 3(1), 147–158 (1990)

    Article  MathSciNet  Google Scholar 

  45. Wilf, H.S., Zeilberger, D.: An algorithmic proof theory for hypergeometric (ordinary and “\(q\)”) multisum/integral identities. Invent. Math. 108(3), 575–633 (1992)

  46. Wilf, H.S., Zeilberger, D.: Rational function certification of multisum/integral/“\(q\)” identities. Bull. Am. Math. Soc. (N.S.) 27(1):148–153 (1992)

  47. Zeilberger, D.: A holonomic systems approach to special functions identities. J. Comput. Appl. Math. 32(3), 321–368 (1990)

    Article  MathSciNet  Google Scholar 

  48. Zeilberger, D.: The method of creative telescoping. J. Symb. Comput. 11(3), 195–204 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruyong Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S. Chen and Z. Li were partially supported by the National Key R &D Program of China (No. 2023YFA1009401), the NSFC Grants (Nos. 12271511 and 11688101), CAS Project for Young Scientists in Basic Research (Grant No. YSBR-034), and the CAS Fund of the Youth Innovation Promotion Association (No. Y2022001). R. Feng was partially supported by the NSFC Grants 11771433, Beijing Natural Science Foundation under Grant Z190004 and the National Key Research and Development Project 2020YFA0712300, M.F. Singer was partially supported by a Grant from the Simons Foundation (#349357, Michael Singer). S.M. Watt was partially supported by a Discovery Grant from the Canadian Natural Sciences and Engineering Research Council.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Feng, R., Li, Z. et al. Telescopers for differential forms with one parameter. Sel. Math. New Ser. 30, 36 (2024). https://doi.org/10.1007/s00029-024-00926-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-024-00926-6

Keywords

Mathematics Subject Classification

Navigation