Abstract
We introduce a geometric operation, which we call the relative Whitney trick, that removes a single double point between properly immersed surfaces in a 4manifold with boundary.Using the relative Whitney trick we prove that every link in a homology sphere is homotopic to a link that is topologically slice in a contractible topological 4manifold. We further prove that any link in a homology sphere is order k Whitney tower concordant to a link in \(S^3\) for all k. Finally, we explore the minimum Gordian distance from a link in \(S^3\) to a homotopically trivial link. Extending this notion to links in homology spheres, we use the relative Whitney trick to make explicit computations for 3component links and establish bounds in general.
This is a preview of subscription content, access via your institution.
References
Akbulut, S.: A solution to a conjecture of Zeeman. Topology 30(3), 513–515 (1991)
Austin, D., Rolfsen, D.: Homotopy of knots and the Alexander polynomial. Can. Math. Bull. 42(3), 257–262 (1999)
Behrens, S., Kalmár, B., Kim, M.H., Powell, M., Ray, A. (eds.): The Disc Embedding Theorem. Oxford University Press, Oxford (2021)
Cha, J.C.: Rational Whitney tower filtration of links. Math. Ann. 370(3–4), 963–992 (2018)
Cha, J.C., Kim, M.H., Powell, M.: A family of freely slice good boundary links. Math. Ann. 376(3–4), 1009–1030 (2020)
Conant, J., Schneiderman, R., Teichner, P.: Whitney tower concordance of classical links. Geom. Topol. 16(3), 1419–1479 (2012)
Conant, J., Schneiderman, R., Teichner, P.: Milnor invariants and twisted Whitney towers. J. Topol. 7(1), 187–224 (2014)
Daemi, A.: ChernSimons functional and the homology cobordism group. Duke Math. J. 169(15), 2827–2886 (2020)
Davis, C.W.: Concordance, crossing changes, and knots in homology spheres. Can. Math. Bull. 63(4), 744–754 (2020)
Davis, C.W.: Topological concordance of knots in homology spheres and the solvable filtration. J. Topol. 13(1), 343–355 (2020)
Freedman, M.H.: The topology of fourdimensional manifolds. J. Differ. Geom. 17(3), 357–453 (1982)
Freedman, M.H., Quinn, F.: Topology of \(4\)manifolds. In: Princeton Mathematical Series. Princeton University Press, Princeton, NJ (1990)
Freedman, M.H., Teichner, P.: \(4\)manifold topology. II. Dwyer’s filtration and surgery kernels. Invent. Math. 122(3), 531–557 (1995)
Habegger, N., Lin, X.S.: The classification of links up to linkhomotopy. J. Am. Math. Soc. 3(2), 389–419 (1990)
Hom, J., Levine, A. S., Lidman, T.: Knot concordance in homology cobordisms (2018)
Levine, A.S.: Nonsurjective satellite operators and piecewiselinear concordance. Forum Math. Sigma 4(e34), 47 (2016)
Magnus, W., Karrass, A., Solitar, D.: Combinatorial group theory. In: Presentations of Groups in Terms of Generators and Relations. Dover Publications Inc., Mineola, NY (2004)
Milnor, J.: Link groups. J. Ann. Math. 2(59), 177–195 (1954)
Powell, M., Ray, A., Teichner, P.: The 4dimensional disc embedding theorem and dual spheres (2020)
Quinn, F.: Ends of maps. II. Invent. Math. 68(3), 353–424 (1982)
Quinn, F.: Topological transversality holds in all dimensions. Bull. Am. Math. Soc. (N.S.) 18(2), 145–148 (1988)
Schneiderman, R., Teichner, P.: Pulling apart 2spheres in 4manifolds. Doc. Math. 19, 941–992 (2014)
Witt, E.: Treue darstellung liescher ringe. J. Reine Angew. Math. 177, 152–160 (1937)
Zeeman, E.C.: On the dunce hat. Topology 2, 341–358 (1964)
Zhou, H.: Homology concordance and an infinite rank free subgroup. J. Topol. 14, 1369–1395. https://doi.org/10.1112/topo.12211
Acknowledgements
We are are indebted to Matthias Nagel for his contributions. We also thank Aru Ray for helpful conversations. We thank the anonymous referee for helpful suggestions. PO is supported by the SNSF Grant 181199.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix A: Freely slicing boundary links
Appendix A: Freely slicing boundary links
ChaKimPowell [5] describe a set of conditions on a link in \(S^3\) that ensure the link is freely slice. In Sect. 4, we generalized these conditions to links in a general homology 3sphere Y and claimed in Theorem 4.4 that our conditions guaranteed the link was freely slice in the contractible 4manifold X bounded by Y. The proof of this is a close imitation of the argument from ChaKimPowell [5, Sects. 4 & 5] and, as such, we only sketch the argument below. An attempt has been made to include enough detail to follow the argument, but without repeating too much of what already appears in [5].
We begin by recalling some terminology and a theorem from FreedmanQuinn [12]. A transverse pair is two copies of \(S^2\times D^2\) plumbed together at one point. This model is a neighbourhood of the pair of spheres
Take the disjoint union \(N_1, \dots , N_\ell \) of copies of the transverse pair and perform further plumbings between the copies, possibly including selfplumbings, then map the result into a topological 4manifold W via a continuous map that is a homeomorphism to its image. The result of this process is a map \(f:\coprod _i N_i\rightarrow W\) which is called an immersion of a union of transverse pairs.
An immersion of a union of transverse pairs is said to have algebraically trivial intersections if the images of the further plumbings we performed can be arranged in pairs by Whitney disks in W (that may a priori meet \(\coprod _i N_i\)). Such a map f is called \(\pi _1\)null if the inclusion induced map \(\pi _1\left( f\left( \coprod _i N_i\right) \right) \rightarrow \pi _1(W)\) is trivial.
If middledimensional homology classes can be represented in this arrangement, then one is able to use a result of FreedmanQuinn [12, Theorem 6.1] to conclude that f is scobordant rel. boundary to an embedding. In the particular case of interest to us, this gives the following.
Theorem A.1
Suppose W is a compact topological 4manifold, bounded by \(M_L\), with \(\pi _1(W)\) free and generated by the meridians of L. Let \(f:\coprod _i N_i\rightarrow W\) be a \(\pi _1\)null immersion of a union of transverse pairs with algebraically trivial intersections, and inducing an isomorphism \(f_*:H_2(\coprod _i N_i)\rightarrow H_2(W)\). Then there exists a compact topological 4manifold \(W'\), bounded by \(M_L\), with \(\pi _1(W')\) free and generated by the meridians of L, and a locally flat embedding \(f':\coprod _i N_i\hookrightarrow W'\) inducing an isomorphism \(f'_*:H_2(\coprod _i N_i)\rightarrow H_2(W')\).
We now follow the standard surgerytheoretic approach to slice L, sketched in the introduction. Recall that the 0surgery on L is denoted by \(M_L\).
Proposition A.2
Let L be a boundary link with a good disky basis in a homology sphere Y, then \(M_L\) bounds a compact oriented 4manifold W such that

(1)
\(\pi _1(W)\) is free and generated by the meridians of L, and

(2)
\(H_2(W;\mathbb {Z})\) is free and represented by a \(\pi _1\)null immersion of a union of transverse pairs with algebraically trivial intersections.
The argument we now use is almost identical to that appearing in [5, Sect. 5].
Summary of the proof of Proposition A.2
Let \(F=F_1\cup \dots \cup F_n\) be a boundary link Seifert surface for L and let \(\{a_i, b_i\}_{1\le i \le g}\) be a good disky basis, with
the immersed disks as in Definition 4.2. Recalling these conditions, for each i, \(\partial \Delta _{i}^+ = a_i\), \(\partial \Delta ^+_{g+i} = (b_i')^+\), and \(\partial \Delta _i = b_i'\), where \(b_i'\) is the result of pushing \(b_i\) off F such that it has zero linking with \(a_i\), and \((b_i')^+\) is a zero linking parallel copy of \(b_i'\). These disks are all disjoint except that the disks \(\{\Delta _j^+\}_{1\le j \le 2g}\) might intersect each other. Write X for the contractible 4manifold bounded by Y.
For each i, let \(\beta _i\cup \gamma _i\) be the Bing double of \(b_i\) appearing in Fig. 13. Attach 1handles to X along \(\beta _i\) and 2handles to X along the 0framings of \(a_i\), \(\gamma _i\), and \(\delta _i\) to get a 4manifold W. A straightforward argument shows that W has boundary \(M_L\) and has fundamental group freely generated by the meridians of L; see [5, Claim A] for details. Clearly \(H_2(W;\mathbb {Z})\cong \mathbb {Z}^{2g}\). This basis is generated by framed immersed spheres \(\Sigma _1,\dots ,\Sigma _{2g}\) described as follows. For each i, take \(\Sigma _{2i1}\) to be the union of \(\Delta _i^+\) and the core of the 2handle attached to \(a_{i}\). For each i, we can and will assume \(b_i'\) and \((b'_i)^+\) lie on the gray surface bounded by \(\gamma _i\) depicted in Fig. 14 (left). We use this to define a planar surface \(P_i\) bounded by \(\gamma _i\), \(b_i'\) and \((b_i')^+\) as in Fig. 14 (right). Take \(\Sigma _{2i}\) to be the union of \(\Delta _{g+i}^+\), \(\Delta _i\), the core of the handle attached to \(\gamma _i\), and \(P_i\); cf. [5, Claim B].
For each i, a regular neighbourhood of \(\Sigma _{2i1}\cup \Sigma _{2i}\) can now be viewed as an immersed transverse pair. The same arguments from [5, Claim C] and [5, Claim D] now reveal that \(\cup _{i=1}^{2g} \Sigma _i\) has algebraically trivial intersections and is \(\pi _1\)null. \(\square \)
Finally, we can confirm that ChaKimPowell [5, Theorem A] generalizes as claimed.
Proof of Theorem 4.4
Let W be the 4manifold and \(f:\coprod _i N_i\rightarrow W\) the immersion of a union of transverse pairs representing \(H_2(W;\mathbb {Z})\) described in Proposition A.2. Applying Theorem A.1, we obtain \(W'\) and \(f'\). Note that the image of \(f'\) consists of a tubular neighbourhood of locally flat embedded 2spheres representing generators for \(H_2(W';\mathbb {Z})\cong H_2(W;\mathbb {Z})\). These embedded 2spheres come in transverse pairs and we now perform surgery on one sphere from each transverse pair. Since the second sphere from each transverse pair intersected the surgered sphere geometrically once, these surgeries preserve \(\pi _1(W')\). Thus, we obtain \(W''\) with boundary \(M_L\), with \(H_2(W'';\mathbb {Z})=0\), and with \(\pi _1(W'')\) freely generated by the meridians of L. Now attach 2handles to \(M_L\) along the meridians of the link components, with framing so that the 0surgery is reversed. This has Y as the effect of surgery, and by glueing across meridians we ensure that \(\pi _1(W'')=0\). The resultant 4manifold is contractible and has boundary Y. The link L has slice disks given by the cocores of the 2handles we have just attached so it is slice and moreover freely slice as \(\pi _1(W'')\) is free. \(\square \)
Rights and permissions
About this article
Cite this article
Davis, C.W., Orson, P. & Park, J. The relative Whitney trick and its applications. Sel. Math. New Ser. 28, 27 (2022). https://doi.org/10.1007/s0002902100738y
Accepted:
Published:
DOI: https://doi.org/10.1007/s0002902100738y
Keywords
 Link concordance
 Whitney trick
 Whitney tower
Mathematics Subject Classification
 57K10
 57N70