Casanovas, E.: Simple theories and hyperimaginaries. Lecture Notes in Logic 39, Association Symb. IL; Cambridge University Press, Cambridge, Logic, Chicago (2011)
Book
Google Scholar
Conant, G., Pillay, A., Terry, C.: A group version of stable regularity. Math. Proc. Camb. Philos. Soc. 168(2), 405–413 (2020)
MathSciNet
Article
Google Scholar
Conant, G.: On finite sets of small tripling or small alternation in arbitrary groups. Comb. Probab. Comput. 29, 807–829 (2020)
MathSciNet
Article
Google Scholar
Conant, G.: Quantitative structure of stable sets in arbitrary finite groups. Proc. Am. Math. Soc. (2021). https://doi.org/10.1090/proc/15479
MathSciNet
Article
MATH
Google Scholar
Even-Zohar, C., Lovett, S.: The Freiman-Ruzsa theorem over finite fields. J. Combin. Theory Ser. A 125, 333–341 (2014)
MathSciNet
Article
Google Scholar
Freĭman, G. A.: Foundations of a structural theory of set addition (Translated from the Russian), Transl. Math. Monographs, 37, AMS, Providence, RI (1973)
Green, B., Ruzsa, I.Z.: Freĭman’s theorem in an arbitrary abelian group. J. Lond. Math. Soc. 75, 163–175 (2007)
Green, B., Sanders, T.: A quantitative version of the idempotent theorem in harmonic analysis, Ann. Math. (2) 168, 1025–1054 (2008)
Hrushovski, E., Pillay, A.: Weakly normal groups, in Logic Colloquium 85, Stud. Logic Found. Math. 122, North-Holland, Amsterdam, 233–244 (1987)
Hrushovski, E., Pillay, A.: Groups definable in local fields and pseudo-finite fields. Israel J. Math. 85, 203–262 (1994)
MathSciNet
Article
Google Scholar
Hrushovski, E.: Stable group theory and approximate subgroups. J. Am. Math. Soc. 25, 189–243 (2012)
MathSciNet
Article
Google Scholar
Keisler, H.J.: Measures and forking. Ann. Pure Appl. Logic 34, 119–169 (1987)
MathSciNet
Article
Google Scholar
Palacín, D.: On compactifications and product-free sets, to appear in. J. Lond. Math. Soc. 101(1), 156–174 (2020)
MathSciNet
Article
Google Scholar
Pillay, A.: Geometric stability theory, Oxford Logic Guides 32. The Clarendon Press, Oxford University Press, Oxford Science Pub, New York (1996)
Pillay, A.: Model-theoretic consequences of a theorem of Campana and Fujiki. Fund. Math. 174, 187–192 (2002)
MathSciNet
Article
Google Scholar
Ruzsa, I.Z.: Generalized arithmetical progressions and sumsets. Acta Math. Hungar. 65, 379–388 (1994)
MathSciNet
Article
Google Scholar
Ruzsa, I.Z.: An analog of Freĭman’s theorem in groups. Astérisque 258, 323–326 (1999)
Sanders, T.: On the Bogolyubov-Ruzsa lemma. Anal. PDE 5, 627–655 (2012)
MathSciNet
Article
Google Scholar
Sanders, T.: The coset and stability rings. Online J. Anal. Comb. 15, 1 (2020)
MathSciNet
MATH
Google Scholar
Schoen, T.: Near optimal bounds in Freĭman’s theorem. Duke Math. J. 158, 1–12 (2011)
Sisask, O.: Convolutions of sets with bounded VC-dimension are uniformly continuous, Discrete Anal. 2021:1
Starchenko, S.: NIP, Keisler measures and combinatorics, in Séminaire Bourbaki, Astérisque 390, 303–334 (2017)
Tao, T., Vu, V.: Additive Combinatorics, Cambridge Studies in Advanced Mathematics 105. Cambridge University Press, Cambridge (2006)
Book
Google Scholar
Tent, K., Ziegler, M.: A course in model theory. Lecture Notes in Logic 40, Association Symb. CA; Cambridge University Press, Cambridge, Logic, La Jolla (2012)
Book
Google Scholar
Terry, C., Wolf, J.: Quantitative structure of stable sets in finite abelian groups. Trans. Am. Math. Soc. 373, 3885–3903 (2020)
MathSciNet
Article
Google Scholar
Terry, C., Wolf, J.: Stable arithmetic regularity lemma in the finite-field model. Bull. London Math. Soc. 51, 70–88 (2019)
MathSciNet
Article
Google Scholar