Adler, M., van Moerbeke, P.: A matrix integral solution to two-dimensional \(W_p\)-gravity. Commun. Math. Phys. 147, 25–56 (1992)
MATH
Google Scholar
Alexandrov, A.: Cut-and-join description of generalized Brezin-Gross-Witten model. Adv. Theor. Math. Phys. 22, 1347–1399 (2018)
MathSciNet
Google Scholar
Alexandrov, A.: Matrix model for the stationary sector of Gromov-Witten theory of \({\mathbf{P}}^1\). arXiv:2001.08556
Babelon, O., Bernard, D., Talon, M.: Introduction to Classical Integrable Systems. Cambridge University Press, Cambridge (2003)
MATH
Google Scholar
Belavin, A., Dubrovin, B., Mukhametzhanov, B.: Minimal Liouville gravity correlation numbers from Douglas string equation. J. High Energy Phys. 2014, 156 (2014)
Balogh, F., Yang, D.: Geometric interpretation of Zhou’s explicit formula for the Witten–Kontsevich tau function. Lett. Math. Phys. 107, 1837–1857 (2017)
MathSciNet
MATH
Google Scholar
Basor, E.L., Tracy, C.A.: Variance calculations and the Bessel kernel. J. Stat. Phys. 73, 415–421 (1993)
MathSciNet
MATH
Google Scholar
Belliard, R., Eynard, B., Marchal, O.: Integrable differential systems of topological type and reconstruction by the topological recursion. Ann. Henri Poincaré 18, 3193–3248 (2017)
MathSciNet
MATH
Google Scholar
Belliard, R., Eynard, B., Marchal, O.: Loop equations from differential systems on curves. Ann. Henri Poincaré 19, 141–161 (2018)
MathSciNet
MATH
Google Scholar
Bergère, M., Eynard, B.: Determinantal formulae and loop equations. arXiv:0901.3273
Bergère, M., Borot, G., Eynard, B.: Rational differential systems, loop equations, and application to the qth reductions of KP. Ann. Henri Poincaré 16, 2713–2782 (2015)
MathSciNet
MATH
Google Scholar
Bertola, M., Cafasso, M.: The Kontsevich matrix integral: Convergence to the Painlevé hierarchy and Stokes’ phenomenon. Commun. Math. Phys. 352, 585–619 (2017)
MATH
Google Scholar
Bertola, M., Dubrovin, B., Yang, D.: Correlation functions of the KdV hierarchy and applications to intersection numbers over \(\overline{{\cal{M}}}_{g, n}\). Phys. D Nonlinear Phenomena 327, 30–57 (2016)
MathSciNet
MATH
Google Scholar
Bertola, M., Dubrovin, B., Yang, D.: Simple Lie algebras and topological ODEs. IMRN 2018, 1368–1410 (2018)
MathSciNet
MATH
Google Scholar
Bertola, M., Dubrovin, B., Yang, D.: Simple Lie algebras, Drinfeld–Sokolov hierarchies, and multi-point correlation functions. Moscow Math. J. (to appear). arXiv:1610.07534
Bertola, M., Ruzza, G.: The Kontsevich–Penner matrix integral, isomonodromic tau functions and open intersection numbers. Ann. Henri Poincaré 20, 393–443 (2019)
MathSciNet
MATH
Google Scholar
Bertola, M., Ruzza, G.: Brezin–Gross–Witten tau function and isomonodromic deformations. Commun. Number Theory Phys. 13, 827–883 (2019)
MathSciNet
MATH
Google Scholar
Bertola, M., Ruzza, G.: Matrix models for stationary Gromov-Witten invariants of the Riemann sphere. arXiv:2001.10466
Bertola, M., Yang, D.: The partition function of the extended \(r\)-reduced Kadomtsev–Petviashvili hierarchy. J. Phys. A: Math. Theor. 48, 195205 (2015)
MathSciNet
MATH
Google Scholar
Brézin, E., Gross, D.J.: The external field problem in the large N limit of QCD. Phys. Lett. B 97, 120–124 (1980)
MathSciNet
Google Scholar
Buryak, A.: Open intersection numbers and the wave function of the KdV hierarchy. Mosc. Math. J. 16, 27–44 (2016)
MathSciNet
MATH
Google Scholar
Buryak, A., Dubrovin, B., Guéré, J., Rossi, P.: Tau-structure for the double ramification hierarchies. Commun. Math. Phys. 363, 191–260 (2018)
MathSciNet
MATH
Google Scholar
Ciocan-Fontanine, I., Kim, B.: Moduli stacks of stable toric quasimaps. Adv. Math. 225, 3022–3051 (2010)
MathSciNet
MATH
Google Scholar
Chekhov, L., Eynard, B., Orantin, N.: Free energy topological expansion for the 2-matrix model. J. High Energy Phys. 2006, 053 (2006)
MathSciNet
MATH
Google Scholar
Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. Publ. RIMS 18(3), 1077–1110 (1981)
MATH
Google Scholar
Date, E., Kashiwara, M., Jimbo, M., Miwa, T.: Transformation Groups for Soliton Equations. Nonlinear Integrable Systems–Classical Theory and Quantum Theory (Kyoto, 1981), pp. 39–119. World Scientific Publishing, Singapore (1983)
Google Scholar
Deift, P.: Polynomials, Orthogonal, Random Matrices: A Riemann-Hilbert Approach. American Mathematical Society, Providence, RI (1999)
MATH
Google Scholar
Dickey, L.A.: Soliton Equations and Hamiltonian Systems, 2nd edn. World Scientific Publishing, Singapore (2003)
MATH
Google Scholar
Dijkgraaf, R., Verlinde, H., Verlinde, E.: Loop equations and Virasoro constraints in nonperturbative two-dimensional quantum gravity. Nuclear Phys. B 348, 435–456 (1991)
MathSciNet
MATH
Google Scholar
Do, N., Norbury, P.: Topological recursion on the Bessel curve. Commun. Number Theory Phys. 12, 53–73 (2018)
MathSciNet
MATH
Google Scholar
Drinfeld, V.G., Sokolov, V.V.: Lie algebras and equations of Korteweg-de Vries type. J. Math. Sci. 30, 1975–2036 (1985). Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki (Noveishie Dostizheniya), 24, 81–180 (1984)
Dubrovin, B.: Periodic problem for the Korteweg-de Vries equation in the class of finite band potentials. Funct. Anal. Appl. 9, 215–223 (1975)
MATH
Google Scholar
Dubrovin, B.: Geometry of 2D topological field theories. In: “Integrable Systems and Quantum Groups” (Montecatini Terme, 1993). Francaviglia, M., Greco, S. (eds.) Springer Lecture Notes in Math. 1620, 120–348 (1996)
Dubrovin, B.: Integrable Systems and Riemann Surfaces. Lecture Notes (preliminary version) (2009). Available online: http://people.sissa.it/~dubrovin/rsnleq_web.pdf
Dubrovin, B., Liu, S.-Q., Yang, D., Zhang, Y.: Hodge integrals and tau-symmetric integrable hierarchies of Hamiltonian evolutionary PDEs. Adv. Math. 293, 382–435 (2016)
MathSciNet
MATH
Google Scholar
Dubrovin, B., Novikov, S.P.: Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg-de Vries equation. Zh. Eksper. Teoret. Fiz 67, 2131–2144 (1974)
MathSciNet
Google Scholar
Dubrovin, B., Yang, D.: Generating series for GUE correlators. Lett. Math. Phys. 107, 1971–2012 (2016)
MathSciNet
MATH
Google Scholar
Dubrovin, B., Yang, D.: On Gromov–Witten invariants of \({\mathbb{P}}^1\). Math. Res. Lett. 26, 729–748 (2019)
MathSciNet
MATH
Google Scholar
Dubrovin, B., Yang, D.: Matrix resolvent and the discrete KdV hierarchy. Commun. Math. Phys. 377, 1823–1852 (2020)
MathSciNet
MATH
Google Scholar
Dubrovin, B., Yang, D., Zagier, D.: Gromov–Witten invariants of the Riemann sphere. Pure Appl. Math. Q. 16, 153–190 (2018)
MathSciNet
MATH
Google Scholar
Dubrovin, B., Yang, D., Zagier, D.: Geometry and arithmetic of integrable hierarchies of KdV type. I. Integrality. arXiv:2101.10924
Dubrovin, B., Zhang, Y.: Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants. arXiv:math/0108160
Duistermaat, J.J., Grünbaum, F.A.: Differential equations in the spectral parameter. Commun. Math. Phys. 103, 177–240 (1986)
MathSciNet
MATH
Google Scholar
Ènolskii, V.Z., Harnad, J.: Schur function expansions of KP \(\tau \)-functions associated to algebraic curves. Uspekhi Mat. Nauk 66, 137–178 (2011). Translation in Russian Math. Surveys 66, 767–807 (2011)
Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys. 1, 347–452 (2007)
MathSciNet
MATH
Google Scholar
Faber, C.: A conjectural description of the tautological ring of the moduli space of curves, Moduli of curves and abelian varieties, Aspects Math., E33, Friedr. Vieweg, Braunschweig, pp. 109–129 (1999)
Frenkel, I., Zhu, Y.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66, 123–168 (1992)
MathSciNet
MATH
Google Scholar
Gross, D.J., Witten, E.: Possible third-order phase transition in the large-N lattice gauge theory. Phys. Rev. D 21, 446–453 (1980)
Google Scholar
Harer, J., Zagier, D.: The Euler characteristic of the moduli space of curves. Invent. Math. 85, 457–485 (1986)
MathSciNet
MATH
Google Scholar
Hirota, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)
MATH
Google Scholar
Gisonni, M., Grava, T., Ruzza, G.: Laguerre ensemble: Correlators, hurwitz numbers and hodge integrals. Ann. Henri Poincaré 21, 3285–3339 (2020)
MathSciNet
MATH
Google Scholar
Jimbo, M., Miwa, T., Ueno, K.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients I. General theory and \(\tau \)-function. Phys. D 2, 306–352 (1981)
MathSciNet
MATH
Google Scholar
Kac, V.G.: Infinite-dimensional algebras, Dedekind’s \(\eta \)-function, classical Möbius function and the very strange formula. Adv. Math. 30, 85–136 (1978)
MathSciNet
MATH
Google Scholar
Kac, V., Schwarz, A.: Geometric interpretation of the partition function of 2D gravity. Phys. Lett. B 257, 329–334 (1991)
MathSciNet
Google Scholar
Kaufmann, R., Manin, Y., Zagier, D.: Higher Weil–Petersson volumes of moduli spaces of stable-pointed curves. Commun. Math. Phys. 181, 763–787 (1996)
MathSciNet
MATH
Google Scholar
Kostant, B.: The principal three-dimensional subgroup and the betti numbers of a complex simple Lie group. Am. J. Math. 81, 973–1032 (1959)
MathSciNet
MATH
Google Scholar
Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147, 1–23 (1992)
MathSciNet
MATH
Google Scholar
Liu, S.-Q., Zhang, Y.: On quasi-triviality and integrability of a class of scalar evolutionary PDEs. J. Geometry Phys. 57, 101–119 (2006)
MathSciNet
MATH
Google Scholar
Marchal, O.: WKB solutions of difference equations and reconstruction by the topological recursion. Nonlinearity 31, 226–262 (2018)
MathSciNet
MATH
Google Scholar
Mehta, M.L.: Random Matrices, 2nd edn. Academic Press, New York (1991)
MATH
Google Scholar
Mironov, A., Morozov, A., Semenoff, G.W.: Unitary matrix integrals in the framework of the generalized Kontsevich model. 1. Brezin–Gross–Witten Model. Int. J. Modern Phys. A 11, 5031–5080 (1996)
MATH
Google Scholar
Norbury, P.: A new cohomology class on the moduli space of curves. arXiv:1712.03662
Sato, M.: Soliton equations as dynamical systems on a infinite dimensional grassmann manifolds (random systems and dynamical systems). RIMS Kokyuroku 439, 30–46 (1981)
Google Scholar
Segal, G., Wilson, G.: Loop groups and equations of KdV type. Inst. Hautes Études Sci. Publ. Math. 61, 5–65 (1985)
MathSciNet
MATH
Google Scholar
Tracy, C.A., Widom, H.: Level spacing distributions and the Bessel kernel. Commun. Math. Phys. 161, 289–309 (1994)
MathSciNet
MATH
Google Scholar
Witten, E.: Two-dimensional gravity and intersection theory on moduli space. Surveys in Differential Geometry (Cambridge, MA, 1990), (pp. 243–310), Lehigh University, Bethlehem, PA (1991)
Yang, D.: On the matrix-resolvent approach to tau-functions. Talk given at the IBS-CGP workshop “Integrable systems and applications”, Pohang, 2018-May
Yang, D.: On tau-functions for the Toda lattice hierarchy. Lett. Math. Phys. 110, 555–583 (2020)
MathSciNet
MATH
Google Scholar
Zhou, J.: Topological recursions of Eynard-Orantin type for intersection numbers on moduli spaces of curves. Lett. Math. Phys. 103, 1191–1206 (2013)
MathSciNet
MATH
Google Scholar
Zhou, J.: Explicit formula for Witten-Kontsevich tau-function. arXiv:1306.5429
Zhou, J.: On Absolute N-Point Function Associated with Gelfand-Dickey Polynomials. Preprint (2015)
Zhou, J.: Emergent geometry and mirror symmetry of a point. arXiv:1507.01679