Skip to main content
Log in

Maximal estimates for the Schrödinger equation with orthonormal initial data

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

For the one-dimensional Schrödinger equation, we obtain sharp maximal-in-time and maximal-in-space estimates for systems of orthonormal initial data. The maximal-in-time estimates generalize a classical result of Kenig–Ponce–Vega and allow us to obtain pointwise convergence results associated with systems of infinitely many fermions. The maximal-in-space estimates simultaneously address an endpoint problem raised by Frank–Sabin in their work on Strichartz estimates for orthonormal systems of data, and provide a path toward proving our maximal-in-time estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. If \(\beta < 2\) and \((\nu _j^*)_j\) is the sequence \((|\nu _j|)_j\) permuted in a decreasing order, we have \( \Vert \nu \Vert _{\beta '} \lesssim (\sum _{j \ge 1} (\nu _j^*)^{\beta '} j^{\beta '/2} \cdot j^{-\beta '/2})^{1/\beta '} \lesssim \sup _{j \ge 1} j^{1/2} \nu _j^* = \Vert \nu \Vert _{\ell ^{2,\infty }} \) and therefore, by duality, \(\ell ^{\beta } \subseteq \ell ^{2,1}\).

References

  1. Bailey, A.D.: Some Results in Harmonic Analysis Related to Pointwise Convergence and Maximal Operators, PhD thesis, University of Birmingham (2012)

  2. Barthe, F.: On a reverse form of the Brascamp–Lieb inequality. Invent. Math. 134, 355–361 (1998)

    Article  MathSciNet  Google Scholar 

  3. Bennett, J., Carbery, A., Christ, M., Tao, T.: The Brascamp–Lieb inequalities: finiteness, structure and extremals. Geom. Funct. Anal. 17, 1343–1415 (2007)

    Article  MathSciNet  Google Scholar 

  4. Bergh, J., Löfström, J.: Interpolation Spaces: An Introduction. Springer, New York (1976)

    Book  Google Scholar 

  5. Bez, N., Hong, Y., Lee, S., Nakamura, S., Sawano, Y.: On the Strichartz estimates for orthonormal systems of initial data with regularity. Adv. Math. 354, 106736 (2019)

    Article  MathSciNet  Google Scholar 

  6. Bez, N., Lee, S., Nakamura, S., Sawano, Y.: Sharpness of the Brascamp–Lieb inequality in Lorentz space. Electron. Res. Announc. Math. Sci. 24, 53–63 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Bourgain, J.: On the Schrödinger maximal function in higher dimension. Tr. Mat. Inst. Steklova 280, 53–66 (2013)

    Article  MathSciNet  Google Scholar 

  8. Bourgain, J.: A note on the Schrödinger maximal function. J. Anal. Math. 130, 393–396 (2016)

    Article  MathSciNet  Google Scholar 

  9. Brascamp, H.J., Lieb, E.H.: Best constants in Young’s inequality, its converse, and its generalization to more than three functions. Adv. Math. 20, 151–173 (1976)

    Article  MathSciNet  Google Scholar 

  10. Brown, R.M.: Estimates for the scattering map associated with a two-dimensional first-order system. J. Nonlinear Sci. 11, 459–471 (2001)

    Article  MathSciNet  Google Scholar 

  11. Carleson, L.: Some analytic problems related to statistical mechanics, in Euclidean Harmonic Analysis. Proc. Sem., University of Maryland, College Park, MD, Lecture Notes in Mathematics, vol. 779, pp. 5–45. Springer, Berlin (1979)

  12. Chen, T., Hong, Y., Pavlović, N.: Global well-posedness of the NLS system for infinitely many fermions. Arch. Ration. Mech. Anal. 224, 91–123 (2017)

    Article  MathSciNet  Google Scholar 

  13. Chen, T., Hong, Y., Pavlović, N.: On the scattering problem for infinitely many fermions in dimension \(d \ge 3\) at positive temperature. Ann. Inst. H. Poincaré Anal. Non Linéaire 35, 393–416 (2018)

    Article  MathSciNet  Google Scholar 

  14. Cho, C.H., Ko, H.: A note on maximal estimates of generalized Schrödinger equation. arXiv:1809.03246

  15. Cho, C.H., Lee, S., Vargas, A.: Problems on pointwise convergence of solutions to the Schrödinger equation. J. Fourier Anal. Appl. 18, 972–994 (2012)

    Article  MathSciNet  Google Scholar 

  16. Compaan, E., Lucá, R., Staffilani, G.: Pointwise convergence of the Schrödinger flow. Int. Math. Res. Not. (to appear)

  17. Dahlberg, B.E.J., Kenig, C.E.: A note on the almost everywhere behavior of solutions to the Schrödinger equation, in Harmonic Analysis. Minneapolis, Minnesota, Lecture Notes in Mathematics, vol. 908, pp. 205–209. Springer, Berlin (1981)

  18. Dimou, E., Seeger, A.: On pointwise convergence of Schrödinger means. Mathematika 66, 356–372 (2020)

    Article  MathSciNet  Google Scholar 

  19. Du, X., Guth, L., Li, X.: A sharp Schrödinger maximal estimate in \(\mathbb{R}^2\). Ann. Math. 186, 607–640 (2017)

    Article  MathSciNet  Google Scholar 

  20. Du, X., Zhang, R.: Sharp \(L^2\) estimate of Schrödinger maximal function in higher dimensions. Ann. Math. 189, 837–861 (2019)

    Article  MathSciNet  Google Scholar 

  21. Frank, R., Lewin, M., Lieb, E., Seiringer, R.: Strichartz inequality for orthonormal functions. J. Eur. Math. Soc. 16, 1507–1526 (2014)

    Article  MathSciNet  Google Scholar 

  22. Frank, R., Sabin, J.: Restriction theorems for orthonormal functions, Strichartz inequalities, and uniform Sobolev estimates. Am. J. Math. 139, 1649–1691 (2017)

    Article  MathSciNet  Google Scholar 

  23. Frank, R., Sabin, J.: The Stein-Tomas inequality in trace ideals, Séminaire Laurent Schwartz—EPD et applications (2015–2016), Exp. No. XV, 12 pp. (2016)

  24. Ginibre, J., Velo, G.: Smoothing properties and retarded estimates for some dispersive evolution equations. Commun. Math. Phys. 123, 535–573 (1989)

    Article  Google Scholar 

  25. Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120, 955–980 (1998)

    Article  MathSciNet  Google Scholar 

  26. Kenig, C.E., Ponce, G., Vega, L.: Oscillatory integrals and regularity of dispersive equations. Indiana Univ. Math. J. 40, 33–69 (1991)

    Article  MathSciNet  Google Scholar 

  27. Lee, S.: On pointwise convergence of the solutions to Schrödinger equations in \( \mathbb{R}^2\). Int. Math. Res. Not. IMRN 2006, 1–21 (2006)

  28. Lewin, M., Sabin, J.: The Hartree equation for infinitely many particles I. Well-posedness theory. Commun. Math. Phys. 334, 117–170 (2015)

    Article  MathSciNet  Google Scholar 

  29. Lewin, M., Sabin, J.: The Hartree equation for infinitely many particles. II. Dispersion and scattering in 2D. Anal. PDE 7, 1339–1363 (2014)

    Article  MathSciNet  Google Scholar 

  30. Li, D., Yu, H.: Convergence of a class of Schrödinger equations. Rocky Mountain J. Math. 50, 639–649 (2020)

    Article  MathSciNet  Google Scholar 

  31. Lieb, E.H.: An \(L^p\) bound for the Riesz and Bessel potentials of orthonormal functions. J. Funct. Anal. 51, 159–165 (1983)

    Article  MathSciNet  Google Scholar 

  32. Lucá, R., Rogers, K.M.: Coherence on fractals versus convergence for the Schrödinger equation. Commun. Math. Phys. 351, 341–359 (2017)

    Article  Google Scholar 

  33. Lucá, R., Rogers, K.M.: Average decay for the Fourier transform of measures with applications. J. Eur. Math. Soc. 21, 465–506 (2019)

    Article  MathSciNet  Google Scholar 

  34. Nikodym, O.: Sur la mesure des ensembles plans dont tous les oints sont rectilinéairement accessibles. Fundam. Math. 10, 116–168 (1927)

    Article  Google Scholar 

  35. Perry, P.: Global well-posedness and long-time asymptotics for the defocussing Davey–Stewartson II equation in \(H^{1,1}(\mathbb{C})\), with an appendix by M. Christ. J. Spectr. Theory 6, 429–481 (2016)

    Article  MathSciNet  Google Scholar 

  36. Sabin, J.: The Hartree equation for infinite quantum systems. Journées équations aux dérivées partielles, Exp. No. 8. 18 p (2014)

  37. Shiraki, S.: Pointwise convergence along restricted directions for the fractional Schrödinger equation. J. Fourier Anal. Appl. (to appear)

  38. Sjölin, P.: Nonlocalization of operators of Schrödinger type. Ann. Acad. Sci. Fenn. Math. 38, 141–147 (2013)

    Article  MathSciNet  Google Scholar 

  39. Sjölin, P.: Two theorems on convergence of Schrödinger means. J. Fourier Anal. Appl. 25, 1708–1716 (2019)

    Article  MathSciNet  Google Scholar 

  40. Sjölin, P., Strömberg, J.: Convergence of sequences of Schrödinger means. J. Math. Anal. Appl. 483, 123580 (2020)

    Article  MathSciNet  Google Scholar 

  41. Stein, E.M.: Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series 43. Princeton University Press, Princeton (1993)

    Google Scholar 

  42. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, No. 32. Princeton University Press, Princeton (1971)

    Google Scholar 

  43. Strichartz, R.S.: Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44, 705–774 (1977)

    Article  MathSciNet  Google Scholar 

  44. Wisewell, L.: Oscillatory integrals and curved Kakeya sets, PhD Thesis, University of Edinburgh (2003)

Download references

Acknowledgements

This work was supported by JSPS Kakenhi grant numbers 18KK0073 and 19H01796 (Bez), Korean Research Foundation Grant No. NRF-2018R1A2B2006298 (Lee), and Grant-in-Aid for JSPS Research Fellow No. 17J01766 (Nakamura).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal Bez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bez, N., Lee, S. & Nakamura, S. Maximal estimates for the Schrödinger equation with orthonormal initial data. Sel. Math. New Ser. 26, 52 (2020). https://doi.org/10.1007/s00029-020-00582-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-020-00582-6

Keywords

Mathematics Subject Classification

Navigation