Abstract
Let \(S_1, \ldots , S_N\) simple finite-dimensional modules of a quantum affine algebra. We prove that if \(S_i\otimes S_j\) is cyclic for any \(i < j\) (i.e. generated by the tensor product of the highest weight vectors), then \(S_1\otimes \cdots \otimes S_N\) is cyclic. The proof is based on the study of R-matrices.
This is a preview of subscription content, access via your institution.
References
Beck, J.: Braid group action and quantum affine algebras. Commun. Math. Phys. 165(3), 555–568 (1994)
Beck, J., Chari, V., Pressley, A.: An algebraic characterization of the affine canonical basis. Duke Math. J. 99(3), 455–487 (1999)
Beck, J., Nakajima, H.: Crystal bases and two-sided cells of quantum affine algebras. Duke Math. J. 123(2), 335–402 (2004)
Chari, V.: Braid group actions and tensor products. Int. Math. Res. Not. 7, 357–382 (2003)
Chari, V., Pressley, A.: Quantum affine algebras. Commun. Math. Phys. 142(2), 261–283 (1991)
Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)
Chari, V., Pressley, A.: Twisted quantum affine algebras. Commun. Math. Phys. 196(2), 461–476 (1998)
Costello, K., Witten, E., Yamazaki, M.: Gauge Theory and Integrability, I. arXiv:1709.09993
Damiani, I.: La \({\cal{R}}\)-matrice pour les algèbres quantiques de type affine non tordu. Ann. Sci. Ecole Norm. Sup. (4) 31(4), 493–523 (1998)
Damiani, I.: From the Drinfeld realization to the Drinfeld–Jimbo presentation of affine quantum algebras: injectivity. Publ. Res. Inst. Math. Sci. 51, 131–171 (2015)
Frenkel, E., Mukhin, E.: Combinatorics of \(q\)-characters of finite-dimensional representations of quantum affine algebras. Commun. Math. Phys. 216(1), 23–57 (2001)
Frenkel, E., Reshetikhin, N.: The \(q\)-characters of representations of quantum affine algebras and deformations of \(W\)-algebras, recent developments in quantum affine algebras and related topics. Contemp. Math. 248, 163–205 (1999)
Gurevich, M.: On restriction of unitarizable representations of general linear groups and the non-generic local Gan–Gross–Prasad conjecture. arXiv:1808.02640
Hernandez, D.: The Kirillov–Reshetikhin conjecture and solutions of T-systems. J. Reine Angew. Math. 596, 63–87 (2006)
Hernandez, D.: Kirillov–Reshetikhin conjecture: the general case. Int. Math. Res. Not. 1, 149–193 (2010)
Hernandez, D.: Simple tensor product. Invent. Math. 181(3), 649–675 (2010)
Hernandez, D.: Avancées concernant les R-matrices et leurs applications (d’après Maulik-Okounkov, Kang- Kashiwara-Kim-Oh...), Sém. Bourbaki 69 ème année, 2016–2017, no. 1129, to appear in Astérisque
Hernandez, D., Leclerc, B.: Cluster algebras and quantum affine algebras. Duke Math. J. 164(12), 2407–2460 (2015)
Hernandez, D., Leclerc, B.: A cluster algebra approach to q-characters of Kirillov–Reshetikhin modules. J. Eur. Math. Soc. 18(5), 1113–1159 (2016)
Jakelic, D., Moura, A.: Tensor products, characters, and blocks of finite-dimensional representations of quantum affine algebras at roots of unity. Int. Math. Res. Not. 2011(18), 4147–4199. arXiv:0909.2198v1
Kac, V.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)
Kashiwara, M.: On level-zero representations of quantized affine algebras. Duke Math. J. 112(1), 117–175 (2002)
Kang, S.-J., Kashiwara, M., Kim, M., Oh, S.-J.: Monoidal categorification of cluster algebras. J. Am. Math. Soc. 31, 349–426 (2018)
Maulik, D., Okounkov, A.: Quantum groups and quantum cohomology. arXiv:1211.1287, to appear in Astérisque
Nakajima, H.: t-analogs of q-characters of Kirillov–Reshetikhin modules of quantum affine algebras. Represent. Theory 7, 259–274 (2003)
Varagnolo, M., Vasserot, E.: Standard modules of quantum affine algebras. Duke Math. J. 111(3), 509–533 (2002)
Acknowledgements
The author would like to thank B. Leclerc and A. Moura for interesting comments and discussions. The author is supported by the European Research Council under the European Union’s Framework Programme H2020 with ERC Grant Agreement Number 647353 Qaffine.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Hernandez, D. Cyclicity and R-matrices. Sel. Math. New Ser. 25, 19 (2019). https://doi.org/10.1007/s00029-019-0465-z
Published:
DOI: https://doi.org/10.1007/s00029-019-0465-z
Keywords
- Quantum affine algebras
- Cyclic modules
- Tensor product factorization
Mathematics Subject Classification
- 17B37 (17B10, 81R50)