Abstract
We examine the concept of field in tensor-triangular geometry. We gather examples and discuss possible approaches, while highlighting open problems. As the construction of residue tt-fields remains elusive, we instead produce suitable homological tensor-functors to Grothendieck categories.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Auslander, M.: Representation theory of Artin algebras. II. Commun. Algebra 1, 269–310 (1974)
Balmer, P.: Spectra, spectra, spectra–tensor triangular spectra versus Zariski spectra of endomorphism rings. Algebra Geom. Topol. 10(3), 1521–1563 (2010)
Balmer, P.: Tensor triangular geometry. In: International Congress of Mathematicians, Hyderabad (2010), vol. II, pp. 85–112. Hindustan Book Agency (2010)
Balmer, P.: Nilpotence theorems via homological residue fields. Preprint, 16 pp. arXiv:1710.04799 (2017)
Balmer, P., Dell’Ambrogio, I., Sanders, B.: Restriction to finite-index subgroups as étale extensions in topology KK-theory and geometry. Algebra Geom. Topol. 15(5), 3025–3047 (2015)
Balmer, P., Dell’Ambrogio, I., Sanders, B.: Grothendieck-Neeman duality and the Wirthmüller isomorphism. Compos. Math. 152(8), 1740–1776 (2016)
Beligiannis, A.: Relative homological algebra and purity in triangulated categories. J. Algebra 227(1), 268–361 (2000)
Balmer, P., Favi, G.: Generalized tensor idempotents and the telescope conjecture. Proc. Lond. Math. Soc. 102(6), 1161–1185 (2011)
Balmer, P., Krause, H., Stevenson, G.: The frame of smashing tensor-ideals. Math. Proc. Cambridge Philos. Soc. (2018). https://doi.org/10.1017/S0305004118000725
Carlson, J.F., Friedlander, E.M., Pevtsova, J.: Modules of constant Jordan type. J. Reine Angew. Math. 614, 191–234 (2008)
Gabriel, P.: Des catégories abéliennes. Bull. Soc. Math. Fr. 90, 323–448 (1962)
Grothendieck, A.: Sur quelques points d’algèbre homologique. Tôhoku Math. J. 2(9), 119–221 (1957)
Heller, J., Ormsby, K.M.: Primes and fields in stable motivic homotopy theory. Geom. Topol. 22(4), 2187–2218 (2018). https://doi.org/10.2140/gt.2018.22.2187
Hovey, M., Palmieri, J.H.: The structure of the Bousfield lattice. In: Boardman, J.M., Meyer, J-P., Morava, J., Stephen Wilson, W. (eds.) Homotopy Invariant Algebraic Structures (Baltimore, MD, 1998), Contemporary Mathematics, vol. 239, pp. 175–196. American Mathematical Society, Providence, RI (1999)
Hovey, M., Palmieri, J.H., Strickland, N.P.: Axiomatic Stable Homotopy Theory. Memoirs of the American Mathematical Society, vol. 128(610) (1997)
Krause, H., Reichenbach, U.: Endofiniteness in stable homotopy theory. Trans. Am. Math. Soc. 353(1), 157–173 (2001)
Krause, Henning: Smashing subcategories and the telescope conjecture—an algebraic approach. Invent. Math. 139(1), 99–133 (2000)
Mathew, A.: Residue fields for a class of rational \({\text{ E }}_\infty \)-rings andapplications. J. Pure Appl. Algebra 221(3), 707–748 (2017)
Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5. Springer, New York (1998)
Neeman, A.: The chromatic tower for \(D(R)\). Topology 31(3), 519–532 (1992)
Amnon, N.: The connection between the \(K\)-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel. Ann. Sci. École Norm. Sup. 25(5), 547–566 (1992)
Neeman, A.: Triangulated Categories. Annals of Mathematics Studies, vol. 148. Princeton University Press, Princeton (2001)
Claus Michael Ringel and Hiroyuki Tachikawa: \({\text{ QF }}-3\) rings. J. Reine Angew. Math. 272, 49–72 (1974)
Stevenson, G.: A tour of support theory for triangulated categories through tensor triangular geometry. In: Building Bridges Between Algebra and Topology, pp. 63–101. Springer (2018)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
P. Balmer supported by Humboldt Research Award and NSF Grant DMS-1600032.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Balmer, P., Krause, H. & Stevenson, G. Tensor-triangular fields: ruminations. Sel. Math. New Ser. 25, 13 (2019). https://doi.org/10.1007/s00029-019-0454-2
Published:
DOI: https://doi.org/10.1007/s00029-019-0454-2