Abstract
We introduce a new link invariant called the algebraic genus, which gives an upper bound for the topological slice genus of links. In fact, the algebraic genus is an upper bound for another version of the slice genus proposed here: the minimal genus of a surface in the four-ball whose complement has infinite cyclic fundamental group. We characterize the algebraic genus in terms of cobordisms in three-space, and explore the connections to other knot invariants related to the Seifert form, the Blanchfield form, knot genera and unknotting. Employing Casson-Gordon invariants, we discuss the algebraic genus as a candidate for the optimal upper bound for the topological slice genus that is determined by the S-equivalence class of Seifert matrices.
This is a preview of subscription content, access via your institution.
References
Baader, S.: On the stable 4-genus of knots with indefinite Seifert form. Commun. Anal. Geom. 24(2), 301–305 (2016). arXiv:1408.6091
Baader, S., Feller, P., Lewark, L., Liechti, L.: On the topological 4-genus of torus knots. Trans. Am. Math. Soc. 370(4), 2639–2656 (2018). arXiv:1509.07634
Baader, S., Lewark, L.: The stable 4-genus of alternating knots. Asian J. Math. (6), 1183–1190 (2017). arXiv:1505.03345
Borodzik, M., Friedl, S.: Knotorious world wide web page. http://www.mimuw.edu.pl/~mcboro/knotorious.php, retrieved November 8 (2016)
Borodzik, M., Friedl, S.: On the algebraic unknotting number. Trans. Lond. Math. Soc. 1(1), 57–84 (2014). arXiv:1308.6105
Borodzik, M., Friedl, S.: The unknotting number and classical invariants, I. Algebr. Geom. Topol. 15(1), 85–135 (2015). arXiv:1203.3225
Casson, A. J., McA, C.: Gordon: on slice knots in dimension three, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, Proc. Sympos. Pure Math., XXXII, Am. Math. Soc., Providence, RI (1978) pp. 39–53
Casson, A. J., Gordon, C. McA.: Cobordism of classical knots, À la recherche de la topologie perdue, Progr. Math., vol. 62, Birkhäuser Boston, Boston, MA, With an appendix by P. M. Gilmer, pp. 181–199 (1986)
Cha, J.C.: Topological minimal genus and \(L^2\)-signatures. Algebr. Geom. Topol. 8(2), 885–909 (2008)
Cha, J. C., Livingston, C.: KnotInfo: Table of Knot Invariants. www.indiana.edu/~knotinfo, retrieved on November 8 (2016)
Cochran, T. D., Orr, K. E., Teichner, P.: Knot concordance, Whitney towers and \(L^2\)-signatures, Ann. of Math. (2) 157(2), pp. 433–519 (2003). arXiv:math/9908117
Feller, P.: The degree of the Alexander polynomial is an upper bound for the topological slice genus. Geom. Topol. 20(3), 1763–1771 (2016). arXiv:1504.01064
Feller, P., McCoy, D.: On 2-bridge knots with differing smooth and topological slice genera. Proc. Am. Math. Soc. 144(12), 5435–5442 (2016). arXiv:1508.01431
Fogel, M.: The algebraic unknotting number, Ph.D. thesis, University of California, Berkeley (1993)
Freedman, M.H.: The topology of four-dimensional manifolds. J. Differ. Geom. 17(3), 357–453 (1982)
Freedman, M.H., Quinn, F.: Topology of 4-manifolds, Princeton Mathematical Series, vol. 39. Princeton University Press, Princeton, NJ (1990)
Garoufalidis, S., Teichner, P.: On knots with trivial Alexander polynomial. J. Differ. Geom. 67(1), 167–193 (2004)
Gilmer, P.M.: On the slice genus of knots. Invent. Math. 66(2), 191–197 (1982)
Gompf, R.E., Stipsicz, A.I.: \(4\)-manifolds and Kirby Calculus, Graduate Studies in Mathematics, vol. 20. American Mathematical Society, Providence, RI (1999)
Kim, T.: An infinite family of non-concordant knots having the same Seifert form. Comment. Math. Helv. 80(1), 147–155 (2005). arXiv:math/0402425
Ko, K.H.: A Seifert-matrix interpretation of Cappell and Shaneson’s approach to link cobordisms. Math. Proc. Cambridge Philos. Soc. 106(3), 531–545 (1989)
Kronheimer, P.B., Mrowka, T.S.: Gauge theory for embedded surfaces, I. Topology 32(4), 773–826 (1993)
Lewark, L., McCoy, D.: On calculating the slice genera of 11- and 12-crossing knots, accepted for publication by Exp. Math. (2016) arXiv:1508.01098v2
Liechti, L.: Positive braid knots of maximal topological 4-genus. Math. Proc. Camb. Philos. Soc. 161(3), 559–568 (2016). arXiv:1511.03883
Litherland,R. A.: Signatures of iterated torus knots, topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, : Lecture Notes in Math., vol. 722. Springer, Berlin 1979, 71–84 (1977)
Livingston,C.: Examples in Concordance, a shortened version of this article has been published as [27] (2001). arXiv:math/0101035v2
Livingston, C.: Seifert forms and concordance. Geom. Topol. 6, 403–408 (2002). arXiv:math/0101035v3
Livingston, C.: The stable 4-genus of knots. Algebr. Geom. Topol. 10(4), 2191–2202 (2010). arXiv:0904.3054
Livingston, C., Naik, S.: Ozsváth-Szabó and Rasmussen invariants of doubled knots. Algebr. Geom. Topol. 6, 651–657 (2006). arXiv:math/0505361
Milnor, J., Husemöller,D.: Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 73, Springer (1973)
Murakami,H.: Algebraic unknotting operation, Proceedings of the Second Soviet-Japan Joint Symposium of Topology (Khabarovsk, 1989), vol. 8, Questions Answers Gen. Topology, vol. 1, pp. 283–292 (1990)
Rolfsen,D.: Knots and Links, Mathematics Lecture Series, vol. 7, Publish or Perish Inc., Houston, TX, Corrected reprint of the 1976 original (1990)
Rudolph, L.: Constructions of quasipositive knots and links, I, Knots, Braids and Singularities (Plans-sur-Bex, : Monogr. Enseign. Math., vol. 31, Enseignement Math. Geneva 1983, 233–245 (1982)
Rudolph, L.: Some topologically locally-flat surfaces in the complex projective plane. Comment. Math. Helv. 59(4), 592–599 (1984)
Rudolph,L.: Quasipositivity as an obstruction to sliceness, Bull. Amer. Math. Soc. (N.S.) 29(1), 51–59 (1993). arXiv:math/9307233
Saeki, O.: On algebraic unknotting numbers of knots. Tokyo J. Math. 22(2), 425–443 (1999)
Taylor,L. R.: On the genera of knots, Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, : Lecture Notes in Math., vol. 722. Springer, Berlin 1979, 144–154 (1977)
Trotter, H.F.: Homology of group systems with applications to knot theory. Ann. Math. 76(2), 464–498 (1962)
Acknowledgments
We thank Danny Ruberman for pointing us to [37]. We thank Sebastian Baader and Livio Liechti for valuable inputs; in particular, concerning Proposition 25. We thank Mark Powell for comments on a first version of this paper, and the referee for helpful suggestions. Both authors gratefully acknowledge support by the SNSF and thank the MPIM Bonn for its hospitality.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Feller, P., Lewark, L. On classical upper bounds for slice genera. Sel. Math. New Ser. 24, 4885–4916 (2018). https://doi.org/10.1007/s00029-018-0435-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00029-018-0435-x
Keywords
- Slice genus
- Seifert form
- Casson-Gordon invariants
- Algebraic unknotting number
Mathematics Subject Classification
- 57M25
- 57M27