Skip to main content
Log in

The elliptic Hall algebra and the deformed Khovanov Heisenberg category

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We give an explicit description of the trace, or Hochschild homology, of the quantum Heisenberg category defined in  Licata and Savage (Quantum Topol 4(2):125–185, 2013. arXiv:1009.3295). We also show that as an algebra, it is isomorphic to “half” of a central extension of the elliptic Hall algebra of Burban and Schiffmann (Duke Math J 161(7):1171–1231, 2012. arXiv:math/0505148), specialized at \(\sigma = {\bar{\sigma }}^{-1} = q\). A key step in the proof may be of independent interest: we show that the sum (over n) of the Hochschild homologies of the positive affine Hecke algebras \(\mathrm{AH}_n^+\) is again an algebra, and that this algebra injects into both the elliptic Hall algebra and the trace of the q-Heisenberg category. Finally, we show that a natural action of the trace algebra on the space of symmetric functions agrees with the specialization of an action constructed by Schiffmann and Vasserot using Hilbert schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beliakova, A., Guliyev, Z., Habiro, K., Lauda, A.D.: Trace as an alternative decategorification functor. Acta Math. Vietnam. 39(4), 425–480 (2014)

    Article  MathSciNet  Google Scholar 

  2. Beliakova, A., Habiro, K., Lauda, A.D., Webster, B.: Current algebras and categorified quantum groups. J. Lond. Math. Soc. 95, 248–276 (2017). arXiv:1412.1417

    Article  MathSciNet  Google Scholar 

  3. Beliakova, A., Habiro, K., Lauda, A.D., Zivkovic, M.: Trace decategorification of categorified quantum \(\mathfrak{sl}_2\). Math. Ann. 367(1–2), 397–440 (2017)

    Article  MathSciNet  Google Scholar 

  4. Burban, I., Schiffmann, O.: On the Hall algebra of an elliptic curve, I. Duke Math. J. 161(7), 1171–1231 (2012). arXiv:math/0505148

    Article  MathSciNet  Google Scholar 

  5. Cautis, S., Lauda, A. D., Licata, A. M., Sussan, J.: W-algebras from Heisenberg categories. J. Inst. Math. Jussieu 1–37 (2016). https://doi.org/10.1017/S1474748016000189

    Article  MathSciNet  Google Scholar 

  6. Ding, J., Iohara, K.: Generalization of Drinfeld quantum affine algebras. Lett. Math. Phys. 41(2), 181–193 (1997). arXiv:math/9905087

    Article  MathSciNet  Google Scholar 

  7. Dipper, R., James, G.: Blocks and idempotents of Hecke algebras of general linear groups. Proc. Lond. Math. Soc. (3) 54(1), 57–82 (1987)

    Article  MathSciNet  Google Scholar 

  8. Elias, B., Lauda, A.D.: Trace decategorification of the Hecke category. J. Algebra 449, 615–634 (2016). arXiv:1504.05267

    Article  MathSciNet  Google Scholar 

  9. Feigin, B., Feigin, E., Jimbo, M., Miwa, T., Mukhin, E.: Quantum continuous \(\mathfrak{gl}_\infty \): semiinfinite construction of representations. Kyoto J. Math. 51(2), 337–364 (2011). arXiv:1002.3100

    Article  MathSciNet  Google Scholar 

  10. Feigin, B.L., Tsymbaliuk, A.I.: Equivariant \(K\)-theory of Hilbert schemes via shuffle algebra. Kyoto J. Math. 51(4), 831–854 (2011). arXiv:0904.1679

    Article  MathSciNet  Google Scholar 

  11. Geck, M., Pfeiffer, G.: Characters of Finite Coxeter Groups and Iwahori–Hecke Algebras. London Mathematical Society Monographs, New Series, vol. 21. The Clarendon Press, Oxford University Press, New York (2000)

  12. Khovanov, M.: Heisenberg algebra and a graphical calculus. Fund. Math. 225(1), 169–210 (2014). arXiv:1009.3295

    Article  MathSciNet  Google Scholar 

  13. Licata, A., Savage, A.: Hecke algebras, finite general linear groups, and Heisenberg categorification. Quantum Topol. 4(2), 125–185 (2013). arXiv:1009.3295

    Article  MathSciNet  Google Scholar 

  14. Lukac, S.G.: Idempotents of the Hecke algebra become Schur functions in the skein of the annulus. Math. Proc. Camb. Philos. Soc. 138(1), 79–96 (2005)

    Article  MathSciNet  Google Scholar 

  15. Miki, K.: A \((q,\gamma )\) analog of the \(W_{1+\infty }\) algebra. J. Math. Phys. 48(12), 123520 (2007)

    Article  MathSciNet  Google Scholar 

  16. Morton, H.R., Manchón, P.M.G.: Geometrical relations and plethysms in the Homfly skein of the annulus. J. Lond. Math. Soc. (2) 78(2), 305–328 (2008). arXiv:0707.2851

    Article  MathSciNet  Google Scholar 

  17. Morton, H.R.: Power sums and Homfly skein theory. Invariants of Knots and 3-Manifolds (Kyoto, 2001). Geometry & Topology Monographs, vol. 4, pp. 235–244. Geometry and Topology Publication, Coventry (2002). arXiv:math/0111101 (electronic)

  18. Morton, H., Samuelson, P.: The HOMFLYPT skein algebra of the torus and the elliptic Hall algebra. Duke Math. J. 166(5), 801–854 (2017). arXiv:1410.0859

    Article  MathSciNet  Google Scholar 

  19. Nakajima, H.: Lectures on Hilbert Schemes of Points on Surfaces. University Lecture Series, vol. 18. American Mathematical Society, Providence (1999)

    MATH  Google Scholar 

  20. Negut, A.: The shuffle algebra revisited. Int. Math. Res. Not. 2014(22), 6242–6275 (2014). arXiv:1209.3349

    Article  MathSciNet  Google Scholar 

  21. Negut, A.: Moduli of flags of sheaves and their \(K\)-theory. Algebr. Geom. 2(1), 19–43 (2015)

    Article  MathSciNet  Google Scholar 

  22. Przytycki, J.: Skein module of links in a handlebody. Topology ’90 (Columbus, OH, 1990). Ohio State University Mathematics Research Institute Publication, vol. 1, pp. 315–342. de Gruyter, Berlin (1992)

  23. Ringel, C.M.: Hall algebras and quantum groups. Invent. Math. 101(3), 583–591 (1990)

    Article  MathSciNet  Google Scholar 

  24. Schiffmann, O., Vasserot, E.: The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials. Compos. Math. 147(1), 188–234 (2011). arXiv:0802.4001

    Article  MathSciNet  Google Scholar 

  25. Schiffmann, O., Vasserot, E.: Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on \( {A}^2\). Publ. Math. Inst. Hautes Études Sci. 118, 213–342 (2013). arXiv:1202.2756

    Article  MathSciNet  Google Scholar 

  26. Schiffmann, O., Vasserot, E.: The elliptic Hall algebra and the \(K\)-theory of the Hilbert scheme of \(\mathbb{A}^2\). Duke Math. J. 162(2), 279–366 (2013). arXiv:0905.2555

    Article  MathSciNet  Google Scholar 

  27. Shan, P., Varagnolo, M., Vasserot, E.: On the center of quiver Hecke algebras. Duke Math. J. 166(6), 1005–1101 (2017)

    Article  MathSciNet  Google Scholar 

  28. Wan, J., Wang, W.: Frobenius map for the centers of Hecke algebras. Trans. Am. Math. Soc. 367(8), 5507–5520 (2015). arXiv:1208.4446

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to B. Elias, F. Goodman, S. Morrison, O. Schiffmann and D. Tubbenhauer for helpful conversations. The authors are grateful to the referee for pointing out Remark 5.3. S.C. was supported by an NSERC discovery/accelerator Grant. A.D.L. was partially supported by NSF Grant DMS-1255334 and by the Simons Foundation. A.M.L. was supported by an Australian Research Council Discovery Early Career fellowship. J.S. was supported by NSF Grant DMS-1407394, PSC-CUNY Award 67144-0045, and an Alfred P. Sloan Foundation CUNY Junior Faculty Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron D. Lauda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cautis, S., Lauda, A.D., Licata, A.M. et al. The elliptic Hall algebra and the deformed Khovanov Heisenberg category. Sel. Math. New Ser. 24, 4041–4103 (2018). https://doi.org/10.1007/s00029-018-0429-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-018-0429-8

Mathematics Subject Classification

Navigation