Ayala, D., Francis, J.: Factorization homology of topological manifolds. J. Topol. 8(4), 1045–1084 (2015)
MathSciNet
Article
Google Scholar
Ayala, D., Francis, J., Tanaka, H.: Factorization homology of stratified spaces. Selecta Mathematica 23(1), 293–362 (2017)
MathSciNet
Article
Google Scholar
Alekseev, A., Malkin, A., Meinrenken, E.: Lie group valued moment maps. J. Differ. Geom. 48(3), 445–495 (1998)
MathSciNet
Article
Google Scholar
Bellamy, G., Ginzburg, V.: Hamiltonian reduction and nearby cycles for mirabolic D-modules. Adv. Math. 269, 71–161 (2015)
MathSciNet
Article
Google Scholar
Brochier, A., Jordan, D.: Fourier transform for quantum \(D\)-modules via the punctured torus mapping class group. Quantum Topol. 8(2), 361–379 (2017)
MathSciNet
Article
Google Scholar
Balagovic, M., Jordan, D.: The quantum Harish-Chandra isomorphism for \({GL}_2\). arXiv:1603.09218 (2016)
Brochier, A.: A Kohno–Drinfeld theorem for the monodromy of cyclotomic KZ connections. Commun. Math. Phys. 311, 55–96 (2012). https://doi.org/10.1007/s00220-012-1424-0
MathSciNet
Article
MATH
Google Scholar
Brochier, A.: Cyclotomic associators and finite type invariants for tangles in the solid torus. Algebr. Geom. Topol. 13, 3365–3409 (2013)
MathSciNet
Article
Google Scholar
Bruguières, A., Virelizier, A.: The double of a Hopf monad. arXiv preprint arXiv:0812.2443 (2008)
Ben-Zvi, D., Brochier, A., Jordan, D.: Integrating quantum groups over surfaces. J. Topology (2015) arXiv:1501.04652
(To appear)
Ben-Zvi, D., Nadler, D.: The character theory of a complex group. arXiv preprint arXiv:0904.1247 (2009)
Ben-Zvi, D., Nadler, D.: Loop spaces and representations. Duke Math. J. 162(9), 1587–1619 (2013)
MathSciNet
Article
Google Scholar
Ben-Zvi, D., Nadler, D.: Betti geometric Langlands. In: Proceedings of Symposia in Pure Mathematics, vol. 97.2, pp. 3–41. AMS (2018)
Cherednik, I.: DAHA and Verlinde algebras. In: Quantum Theory and Symmetries, pp. 53–64. World Scientific Publishing, Hackensack, NJ (2004)
Cherednik, I.: Double Affine Hecke Algebras. London Mathematical Society Lecture Note Series, vol. 319. Cambridge University Press, Cambridge (2005)
Book
Google Scholar
Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)
MATH
Google Scholar
Donin, J., Kulish, P.P., Mudrov, A.I.: On a universal solution to the reflection equation. Lett. Math. Phys. 63(3), 179–194 (2003)
MathSciNet
Article
Google Scholar
Donin, J., Mudrov, A.: Explicit equivariant quantization on coadjoint orbits of \({GL}(n, {\mathbb{C}})\). Lett. Math. Phys. 62(1), 17–32 (2002)
MathSciNet
Article
Google Scholar
Donin, J., Mudrov, A.: Quantum coadjoint orbits of \({GL}(n)\) and generalized Verma modules. Lett. Math. Phys. 67(3), 167–184 (2004)
MathSciNet
Article
Google Scholar
Donin, J., Mudrov, A.: Quantum groupoids and dynamical categories. J. Algebra 296(2), 348–384 (2006)
MathSciNet
Article
Google Scholar
Douglas, C.L., Schommer-Pries, C., Snyder, N.: Dualizable tensor categories. arXiv:1312.7188 (2013)
Etingof, P., Geer, N.: Monodromy of trigonometric KZ equations. Int. Math. Res. Not. IMRN 24, 15 (2007)
MathSciNet
MATH
Google Scholar
Enriquez, B.: Quasi-reflection algebras and cyclotomic associators. Sel. Math. New Ser. 13, 391–463 (2008). https://doi.org/10.1007/s00029-007-0048-2
MathSciNet
Article
MATH
Google Scholar
Frohman, C., Gelca, R.: Skein modules and the noncommutative torus. Trans. Am. Math. Soc. 352(10), 4877–4888 (2000)
MathSciNet
Article
Google Scholar
Finkelberg, M., Ginzburg, V.: On mirabolic D-modules. Int. Math. Res. Not. 2010(15), 2947–2986 (2010)
MathSciNet
Article
Google Scholar
Freed, D.S., Hopkins, M.J., Teleman, C.: Loop groups and twisted \({K}\)-theory III. Ann. Math. 174(2), 947–1007 (2011)
MathSciNet
Article
Google Scholar
Fehér, L., Klimčík, C.: Self-duality of the compactified Ruijsenaars–Schneider system from quasi-Hamiltonian reduction. Nucl. Phys. B 860(3), 464–515 (2012)
MathSciNet
Article
Google Scholar
Fehér, L., Klimčík, C.: The Ruijsenaars Self-Duality Map as a Mapping Class Symplectomorphism, pp. 423–437. Springer, Tokyo (2013)
MATH
Google Scholar
Fehér, L., Kluck, T.: New compact forms of the trigonometric Ruijsenaars–Schneider system. Nucl. Phys. B 882, 97–127 (2014)
MathSciNet
Article
Google Scholar
Fock, V.V., Rosly, A.A.: Poisson structure on moduli of flat connections on Riemann surfaces and the \(r\)-matrix. In: Moscow Seminar in Mathematical Physics, vol. 191 of Am. Math. Soc. Transl. Ser. 2, pp. 67–86. Am. Math. Soc., Providence, RI (1999)
Francis, J.: The tangent complex and Hochschild cohomology of \({E}_n\)-rings. Compos. Math. 149(3), 430–480 (2013)
MathSciNet
Article
Google Scholar
Fuchs, J., Schaumann, G., Schweigert, S.: A trace for bimodule categories. arXiv:1412.6968 (2014)
Gaitsgory, D.: Quantum Langlands correspondence. arXiv preprint arXiv:1601.05279 (2016)
Gan, W.L., Ginzburg, V.: Almost-commuting variety, D-modules, and Cherednik algebras. Int. Math. Res. Pap. (2006)
Ginot, G.: Notes on factorization algebras, factorization homology and applications. In: Mathematical aspects of quantum field theories, pp. 429–552. Springer (2015)
Gorsky, A., Nekrasov, N.: Relativistic Calogero–Moser model as gauged WZW theory. Nucl. Phys. B 436(3), 582–608 (1995)
MathSciNet
Article
Google Scholar
Gunningham, S.: A generalized Springer decomposition for D-modules on a reductive Lie algebra. arXiv preprint arXiv:1510.02452 (2015)
Jordan, D.: Quantized multiplicative quiver varieties. Adv. Math. 250, 420–466 (2014)
MathSciNet
Article
Google Scholar
Kolb, S., Stokman, J.: Reflection equation algebras, coideal subalgebras, and their centres. Sel. Math. 15(4), 621–664 (2009)
MathSciNet
Article
Google Scholar
Lurie, J.: Higher algebra. http://www.math.harvard.edu/~lurie/
Lurie, J.: On the classification of topological field theories. Curr. Dev. Math. 2008, 129–280 (2009)
MathSciNet
Article
Google Scholar
Nevins, T.: Mirabolic Langlands duality and the quantum Calogero–Moser system. Transform. Groups 14(4), 931–983 (2009)
MathSciNet
Article
Google Scholar
Oblomkov, A.: Double affine Hecke algebras and Calogero–Moser spaces. Represent. Theory Am. Math. Soc. 8(10), 243–266 (2004)
MathSciNet
Article
Google Scholar
Ruijsenaars, S., Schneider, H.: A new class of integrable systems and its relation to solitons. Ann. Phys. 170(2), 370–405 (1986)
MathSciNet
Article
Google Scholar
Voronov, A.A.: The Swiss-cheese operad. In: Homotopy invariant algebraic structures (Baltimore, MD, 1998), vol. 239 of Contemp. Math., pp. 365–373. Am. Math. Soc., Providence, RI (1999)
Varagnolo, M., Vasserot, E.: Double affine Hecke algebras at roots of unity. Represent. Theory 14, 510–600 (2010)
MathSciNet
Article
Google Scholar