Skip to main content

Six-functor-formalisms and fibered multiderivators


We develop the theory of (op)fibrations of 2-multicategories and use it to define abstract six-functor-formalisms. We also give axioms for Wirthmüller and Grothendieck formalisms (where either \(f^{!}=f^{*}\) or \(f_{!}=f_{*}\)) or intermediate formalisms where we have e.g. a natural morphism \(f_{!}\rightarrow f_{*}\). Finally, it is shown that a fibered multiderivator (in particular, a closed monoidal derivator) can be interpreted as a six-functor-formalism on diagrams (small categories). This gives, among other things, a considerable simplification of the axioms and of the proofs of basic properties, and clarifies the relation between the internal and external monoidal products in a (closed) monoidal derivator. Our main motivation is the development of a theory of derivator versions of six-functor-formalisms.

This is a preview of subscription content, access via your institution.


  1. 1.

    Ayoub, J.: Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. I. Astérisque 314, x+466 pp (2007a)

  2. 2.

    Ayoub, J.: Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. II. Astérisque 315, vi+364 pp (2007b)

  3. 3.

    Bakovic, I.L: Fibrations of bicategories. Preprint (2009)

  4. 4.

    Buckley, M.: Fibred 2-categories and bicategories. J. Pure Appl. Algebra 218(6), 1034–1074 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Cisinski, D.C.: Images directes cohomologiques dans les catégories de modèles. Ann. Math. Blaise Pascal 10(2), 195–244 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Gordon, R., Power, A.J., Street, R.: Coherence for tricategories. Mem. Am. Math. Soc. 117(558), vi+81 (1995)

  7. 7.

    Gurski, N.: An Algebraic Theory of Tricategories. Ph.D. Thesis, University of Chicago, (2006)

  8. 8.

    Hermida, C.: Some properties of \(\text{ Fib }\) as a fibred 2-category. J. Pure Appl. Algebra 134(1), 83–109 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Hermida, C.: Representable multicategories. Adv. Math. 151(2), 164–225 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Hermida, C.: Fibrations for abstract multicategories. Galois Theory Hopf Algebras and Semiabelian Categ. 43, 281–293 (2004)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Hörmann, F.: Fibered multiderivators and (co)homological descent. Theory Appl. Categ. 32(38), 1258–1362 (2017a)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Hörmann, F.: Derivator six-functor-formalisms—definition and construction I. arXiv:1701.02152 (2017b)

  13. 13.

    Kapranov, M.M., Voevodsky, V.A.: 2-Categories and Zamolodchikov tetrahedra equations. In: Algebraic Groups and Their Generalizations: Quantum and Infinite-Dimensional Methods (University Park, PA, 1991), Volume 56 of Proceedings of Symposium Pure Mathematics, pp. 177–259. American Mathematical Society, Providence, RI (1994)

  14. 14.

    Lipman, J., Hashimoto, M.: Foundations of Grothendieck duality for diagrams of schemes. Lecture Notes in Mathematics, vol. 1960. Springer, Berlin (2009)

  15. 15.

    Shulman, M.A.: Constructing symmetric monoidal bicategories. arXiv:1004.0993 (2010)

Download references

Author information



Corresponding author

Correspondence to Fritz Hörmann.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hörmann, F. Six-functor-formalisms and fibered multiderivators. Sel. Math. New Ser. 24, 2841–2925 (2018).

Download citation


  • Derivators
  • Fibered derivators
  • Multiderivators
  • (Op)fibered 2-multicategories
  • Six-functor-formalisms
  • Grothendieck contexts
  • Wirthmüller contexts

Mathematics Subject Classification

  • 55U35
  • 14F05
  • 18D10
  • 18D30
  • 18E30
  • 18G99