Bezrukavnikov, R., Kaledin, D.: Fedosov quantization in algebraic context. Mosc. Math. J. 4(3), 559–592, 782 (2004)
MathSciNet
MATH
Google Scholar
Blanc, A., Katzarkov, L., Pandit, P.: Generators in formal deformations of categories. arXiv:1705.00655 [math.AG] (2017)
Bar-Natan, D.: On associators and the Grothendieck-Teichmuller group. Selecta Math. (N.S.) 4(2), 183–212 (1998)
MathSciNet
Article
MATH
Google Scholar
Braun, C.: Involutive \(A_\infty \)-algebras and dihedral cohomology. J. Homotopy Relat. Struct. 9(2), 317–337 (2014). arXiv:1209.1261v2 [math.QA]
MathSciNet
Article
MATH
Google Scholar
Calaque, D: Shifted cotangent stacks are shifted symplectic. arXiv:1612.08101 [math.AG] (2016)
Calaque, D., Pantev, T., Toën, B., Vaquié, M., Vezzosi, G.: Shifted Poisson structures and deformation quantization. J. Topol. 10(2), 483–584 (2017). arXiv:1506.03699v4 [math.AG]
MathSciNet
Article
MATH
Google Scholar
Deligne, P.: Déformations de l’algèbre des fonctions d’une variété symplectique: comparaison entre Fedosov et De Wilde, Lecomte. Selecta Math. (N.S.) 1(4), 667–697 (1995)
MathSciNet
Article
MATH
Google Scholar
Drinfel’d, V.G.: On quasitriangular quasi-Hopf algebras and on a group that is closely connected with \({\rm Gal}(\overline{\bf Q}/{\bf Q})\). Algebra i Analiz 2(4), 149–181 (1990)
MathSciNet
MATH
Google Scholar
De Wilde, M., Lecomte, P.B.A.: Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds. Lett. Math. Phys. 7(6), 487–496 (1983)
MathSciNet
Article
MATH
Google Scholar
Fedosov, B.V.: A simple geometrical construction of deformation quantization. J. Differential Geom. 40(2), 213–238 (1994)
MathSciNet
Article
MATH
Google Scholar
Goldman, W.M.: Invariant functions on Lie groups and Hamiltonian flows of surface group representations. Invent. Math. 85(2), 263–302 (1986)
MathSciNet
Article
MATH
Google Scholar
Hinich, V.: DG coalgebras as formal stacks. J. Pure Appl. Algebra 162(2–3), 209–250 (2001)
MathSciNet
Article
MATH
Google Scholar
Hochschild, G., Mostow, G.D.: Pro-affine algebraic groups. Am. J. Math. 91, 1127–1140 (1969)
Article
MATH
Google Scholar
Humphreys, J.E.: Existence of Levi factors in certain algebraic groups. Pac. J. Math. 23, 543–546 (1967)
Article
MATH
Google Scholar
Isaksen, Daniel C.: Strict model structures for pro-categories. In: Categorical decomposition techniques in algebraic topology (Isle of Skye, 2001), volume 215 of Progr. Math., pages 179–198. Birkhäuser, Basel. arXiv:math/0108189 [math.AT] (2004)
Kontsevich, M: Operads and motives in deformation quantization. Lett. Math. Phys. 48(1), 35–72 (1999) Moshé Flato (1937–1998)
Kontsevich, M.: Deformation quantization of algebraic varieties. Lett. Math. Phys. 56(3), 271–294 (2001). EuroConférence Moshé Flato 2000, Part III (Dijon)
MathSciNet
Article
MATH
Google Scholar
Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003)
MathSciNet
Article
MATH
Google Scholar
Lowen, W., Bergh, M.V.D: The curvature problem for formal and infinitesimal deformations. arXiv:1505.03698 (2015)
Petersen, D.: Minimal models, GT-action and formality of the little disk operad. Sel. Math. (N.S.) 20(3), 817–822 (2014). arXiv:1303.1448v1 [math.AT]
MathSciNet
Article
MATH
Google Scholar
Pridham, J.P.: Pro-algebraic homotopy types. Proc. London Math. Soc. 97(2), 273–338 (2008). arXiv:math.AT/0606107v8
MathSciNet
Article
MATH
Google Scholar
Pridham, J.P.: Unifying derived deformation theories. Adv. Math. 224(3), 772–826 (2010) arXiv:0705.0344v6 [math.AG], corrigendum 228 (2011), no. 4, 2554–2556
Pridham, J.P.: Notes characterising higher and derived stacksconcretely. arXiv:1105.4853v3 [math.AG] (2011)
Pridham, J.P.: Presenting higher stacks as simplicial schemes. Adv. Math. 238, 184–245 (2013). arXiv:0905.4044v4
MathSciNet
Article
MATH
Google Scholar
Pridham, J.P.: Deformation quantisation for \((-1)\)-shifted symplectic structures and vanishing cycles. arXiv:1508.07936v2 [math.AG] (2015)
Pridham, J.P.: Quantisation of derived Poisson structures. arXiv: 1708.00496v2 [math.AG] (2017)
Pridham, J.P.: Shifted Poisson and symplectic structures on derived \(N\)-stacks. J. Topol. 10(1), 178–210 (2017). arXiv:1504.01940v5 [math.AG]
MathSciNet
Article
MATH
Google Scholar
Pantev, T., Toën, B., Vaquié, M., Vezzosi, G.: Shifted symplectic structures. Publ. Math. Inst. Hautes Études Sci. 117, 271–328 (2013). arXiv: 1111.3209v4 [math.AG]
MathSciNet
Article
MATH
Google Scholar
Tamarkin, D.E.: Operadic proof of M. Kontsevich’s formality theorem. ProQuest LLC, Ann Arbor, MI, 1999. Thesis (Ph.D.)–The Pennsylvania State University
Toën, B.: Derived algebraic geometry and deformation quantization. In Proceedings of the International Congress of Mathematicians (Seoul 2014), Vol. II. pages 769–752, 2014. arXiv:1403.6995v4 [math.AG]
Van den Bergh, M.: On global deformation quantization in the algebraic case. J. Algebra 315(1), 326–395 (2007)
MathSciNet
Article
MATH
Google Scholar
Voronov, A.A.: Homotopy Gerstenhaber algebras. In: Conférence Moshé Flato 1999, Vol. II (Dijon). volume 22 of Math. Phys. Stud., pages 307–331. Kluwer Acad. Publ., Dordrecht (2000) arXiv:math/9908040 [math.QA]
Weibel, Charles A: An introduction to homological algebra. Cambridge University Press, Cambridge (1994)
Book
MATH
Google Scholar
Yekutieli, Amnon: Deformation quantization in algebraic geometry. Adv. Math. 198(1), 383–432 (2005)
MathSciNet
Article
MATH
Google Scholar