Skip to main content
Log in

Derived coisotropic structures I: affine case

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We define and study coisotropic structures on morphisms of commutative dg algebras in the context of shifted Poisson geometry, i.e. \(\mathbb {P}_n\)-algebras. Roughly speaking, a coisotropic morphism is given by a \(\mathbb {P}_{n+1}\)-algebra acting on a \(\mathbb {P}_n\)-algebra. One of our main results is an identification of the space of such coisotropic structures with the space of Maurer–Cartan elements in a certain dg Lie algebra of relative polyvector fields. To achieve this goal, we construct a cofibrant replacement of the operad controlling coisotropic morphisms by analogy with the Swiss-cheese operad which can be of independent interest. Finally, we show that morphisms of shifted Poisson algebras are identified with coisotropic structures on their graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger, C., Moerdijk, I.: Resolution of coloured operads and rectification of homotopy algebras. Contemp. Math. 431, 31–58 (2007). arXiv:math/0512576

    Article  MathSciNet  MATH  Google Scholar 

  2. Caviglia, G.: A model structure for enriched coloured operads. arXiv:1401.6983

  3. Calaque, D., Pantev, T., Toën, B., Vaquié, M., Vezzosi, G.: Shifted Poisson structures and deformation quantization. J. Topol. 10, 483–584 (2017). arXiv:1506.03699

    Article  MathSciNet  MATH  Google Scholar 

  4. Calaque, D., Willwacher, T.: Triviality of the higher Formality Theorem. Proc. Am. Math. Soc. 143, 5181–5193 (2015). arXiv:1310.4605

    Article  MathSciNet  MATH  Google Scholar 

  5. Chapoton, F., Livernet, M.: Pre-Lie algebras and the rooted trees operad. Int. Math. Res. Not. 8, 395–408 (2001). arXiv:math/0002069

    Article  MathSciNet  MATH  Google Scholar 

  6. Dolgushev, V., Rogers, C.: Notes on algebraic operads, graph complexes, and Willwacher’s construction. Contemp. Math. 583, 25–146 (2012). arXiv:1202.2937

    Article  MATH  Google Scholar 

  7. Dolgushev, V., Willwacher, T.: Operadic Twisting—with an application to Deligne’s conjecture. J. Pure Appl. Algebra 219, 1349–1428 (2015). arXiv:1207.2180

    Article  MathSciNet  MATH  Google Scholar 

  8. Dolgushev, V., Willwacher, T.: The deformation complex is a homotopy invariant of a homotopy algebra, Developments and Retrospectives in Lie Theory. Dev. Math. 38, 137–158 (2014). arXiv:1305.4165

    MATH  Google Scholar 

  9. Francis, J.: The tangent complex and Hochschild cohomology of \(E_n\)-rings. Compos. Math. 149, 430–480 (2013). arXiv:1104.0181

    Article  MathSciNet  MATH  Google Scholar 

  10. Fresse, B.: Théorie des opérades de Koszul et homologie des algèbres de Poisson. Ann. Math. Blaise Pascal 13, 237–312 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frégier, Y., Zambon, M.: Simultaneous deformations of algebras and morphisms via derived brackets. J. Pure Appl. Algebra 219, 5344–5362 (2015). arXiv:1301.4864

    Article  MathSciNet  MATH  Google Scholar 

  12. Hinich, V.: Homological algebra of homotopy algebras. Commun. Algebra 25, 3291–3323 (1997). arXiv:q-alg/9702015

    Article  MathSciNet  MATH  Google Scholar 

  13. Hirsh, J., Millès, J.: Curved Koszul duality theory. Math. Ann. 354, 1465–1520 (2012). arXiv:1008.5368

    Article  MathSciNet  MATH  Google Scholar 

  14. Hovey, M.: Model Categories. Mathematical surveys and monographs, vol. 63. AMS, Providence (1998)

    MATH  Google Scholar 

  15. Lazarev, A.: Models for classifying spaces and derived deformation theory. Proc. LMS 109, 40–64 (2014). arXiv:1209.3866

    MathSciNet  MATH  Google Scholar 

  16. le Grignou, B.: Homotopy theory of unital algebras. arXiv:1612.02254

  17. Loday, J.-L., Vallette, B.: Algebraic Operads. Grundlehren Math. Wiss, vol. 346. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  18. Lurie, J.: Higher Algebra. available at http://math.harvard.edu/~lurie/papers/HA.pdf

  19. Markl, M.: Homotopy diagrams of algebras, Proceedings of the 21st Winter School “Geometry and Physics”, Palermo: Circolo Matematico di Palermo (2002) 161–180. arXiv:math/0103052

  20. Melani, V.: Poisson bivectors and Poisson brackets on affine derived stacks. Adv. Math. 288, 1097–1120 (2016). arXiv:1409.1863

    Article  MathSciNet  MATH  Google Scholar 

  21. Melani, V., Safronov, P.: Derived coisotropic structures II: stacks and quantization, to appear in Selecta Mathematica. arXiv:1704.03201

  22. Pavlov, D., Scholbach, J.: Admissibility and rectification of colored symmetric operads, to appear in J. Topol. arXiv:1410.5675

  23. Rezk, C.: Spaces of algebra structures and cohomology of operads, MIT thesis (1996)

  24. Safronov, P.: Poisson reduction as a coisotropic intersection. High. Struct. 1, 87–121 (2017). arXiv:1509.08081

    Google Scholar 

  25. Safronov, P.: Braces and Poisson additivity. arXiv:1611.09668

  26. Thomas, J.: Kontsevich’s Swiss Cheese Conjecture. Geom. Top. 20, 1–48 (2016). arXiv:1011.1635

    Article  MathSciNet  MATH  Google Scholar 

  27. Yalin, S.: Maurer–Cartan spaces of filtered L-infinity algebras. J. Homotopy Relat. Struct. (2015) 1–33. arXiv:1409.4741

  28. Yalin, S.: Function spaces and classifying spaces of algebras over a prop. Algebra Geom. Topol. 16, 2715–2749 (2016). arXiv:1502.01652

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank D. Calaque, G. Ginot, M. Porta, B. Toën and G. Vezzosi for many interesting and stimulating discussions. The work of P.S. was supported by the EPSRC grant EP/I033343/1. We also thank the anonymous referee for his/her useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Melani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melani, V., Safronov, P. Derived coisotropic structures I: affine case. Sel. Math. New Ser. 24, 3061–3118 (2018). https://doi.org/10.1007/s00029-018-0406-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-018-0406-2

Mathematics Subject Classification

Navigation