\(A_\infty \) functors for Lagrangian correspondences

Article
  • 10 Downloads

Abstract

We construct \(A_\infty \) functors between Fukaya categories associated to monotone Lagrangian correspondences between compact symplectic manifolds. We then show that the composition of \(A_\infty \) functors for correspondences is homotopic to the functor for the composition, in the case that the composition is smooth and embedded.

Mathematics Subject Classification

53D40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abouzaid, M., Smith, I.: Homological mirror symmetry for the 4-torus. Duke Math. J. 152(3), 373–440 (2010)MathSciNetMATHGoogle Scholar
  2. 2.
    Batanin, M.A.: Monoidal globular categories as a natural environment for the theory of weak \(n\)-categories. Adv. Math. 136(1), 39–103 (1998)MathSciNetMATHGoogle Scholar
  3. 3.
    Batanin, M.A.: Symmetrisation of \(n\)-operads and compactification of real configuration spaces. Adv. Math. 211(2), 684–725 (2007)MathSciNetMATHGoogle Scholar
  4. 4.
    Batanin, M.A.: Configuration spaces from combinatorial, topological and categorical perspectives. http://maths.mq.edu.au/~street/BatanAustMSMq.pdf. As of July 2017
  5. 5.
    Bottman, N.: Pseudoholomorphic quilts with figure eight singularity. arXiv:1410.3834
  6. 6.
    Bottman, N.: 2-Associahedra. arXiv:1709.00119
  7. 7.
    Ceballos, C., Santos, F., Ziegler, G.: Many non-equivalent realizations of the associahedron. Combinatorica 35(5), 513–551 (2015)MathSciNetMATHGoogle Scholar
  8. 8.
    Floer, A., Hofer, H., Salamon, D.: Transversality in elliptic Morse theory for the symplectic action. Duke Math. J. 80(1), 251–292 (1995)MathSciNetMATHGoogle Scholar
  9. 9.
    Fukaya, K.: Floer homology for 3-manifolds with boundary I. Unpublished Manuscript (1999)Google Scholar
  10. 10.
    Fukaya, K.: Morse homotopy, \(A^\infty \)-category, and Floer homologies. In: Proceedings of GARC Workshop on Geometry and Topology’93 (Seoul, 1993), Volume 18 of Lecture Notes Ser., pp. 1–102. Seoul Nat. Univ., Seoul (1993)Google Scholar
  11. 11.
    Fukaya, K., Oh, Y.G., Ohta, H., Ono, K.: Lagrangian intersection Floer theory: anomaly and obstruction, volume 46 of AMS/IP Studies in Advanced Mathematics. American Mathematical Society, Providence (2009). Orientation chapter at https://www.math.kyoto-u.ac.jp/~fukaya/bookchap9071113.pdf.version.2007
  12. 12.
    Goresky, M., MacPherson, R.: Stratified Morse Theory, volume 14, third series of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin (1988)Google Scholar
  13. 13.
    Knudsen, F.F.: The projectivity of the moduli space of stable curves. II. The stacks \(M_{g, n}\). Math. Scand. 52(2), 161–199 (1983)MathSciNetMATHGoogle Scholar
  14. 14.
    Kontsevich, M., Soibelman, Y.: Notes on \(A_\infty \)-algebras, \(A_\infty \)-categories and non-commutative geometry. In: Homological Mirror Symmetry, Volume 757 of Lecture Notes in Phys., pp. 153–219. Springer, Berlin (2009)Google Scholar
  15. 15.
    Kontsevich, M.: Homological algebra of mirror symmetry. In: Proceedings of the International Congress of Mathematicians, vols. 1, 2 (Zürich, 1994), pp. 120–139. Birkhäuser, Basel (1995)Google Scholar
  16. 16.
    Lefèvre-Hasegawa, K.: Sur les \(A_\infty \)-catégories. Ph.D. Thesis, Université Paris 7 (2003)Google Scholar
  17. 17.
    Lekili, Y., Lipyanskiy, M.: Geometric composition in quilted Floer theory. Adv. Math. 236, 1–23 (2013)MathSciNetMATHGoogle Scholar
  18. 18.
    Lyubashenko, V.: Category of \(A_\infty \)-categories. Homol. Homot. Appl. 5, 1–48 (2003)MathSciNetMATHGoogle Scholar
  19. 19.
    Ma’u, S., Woodward, C.: Geometric realizations of the multiplihedra. Compos. Math. 146(4), 1002–1028 (2010)MathSciNetMATHGoogle Scholar
  20. 20.
    Ma’u, S.: Gluing pseudoholomorphic quilted disks. arXiv:0909.3339
  21. 21.
    McDuff, D., Salamon, D.: \(J\)-holomorphic curves and symplectic topology. American Mathematical Society Colloquium Publications, vol. 52. American Mathematical Society, Providence (2004)Google Scholar
  22. 22.
    Nakajima, H.: Quiver varieties and finite-dimensional representations of quantum affine algebras. J. Am. Math. Soc. 14(1), 145–238 (2001). (electronic)MathSciNetMATHGoogle Scholar
  23. 23.
    Nguyen, K., Woodward, C., Ziltener, F.: Morphisms of cohomological field theories and quantization of the Kirwan map. In: Symplectic, Poisson, and Noncommutative Geometry, pp. 131–170. Cambridge University Press, Cambridge (2014)Google Scholar
  24. 24.
    Oh, Y.-G.: Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I. Commun. Pure Appl. Math. 46(7), 949–993 (1993). Addendum 48(11), 1299–1302 (1995)MathSciNetMATHGoogle Scholar
  25. 25.
    Reid, M.: La correspondance de McKay. Astérisque 276, 53–72 (2002). Séminaire Bourbaki, Vol. 1999/2000MathSciNetMATHGoogle Scholar
  26. 26.
    Seidel, P.: Graded Lagrangian submanifolds. Bull. Soc. Math. Fr. 128(1), 103–149 (2000)MathSciNetMATHGoogle Scholar
  27. 27.
    Seidel, P.: Fukaya Categories and Picard–Lefschetz Theory. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2008)MATHGoogle Scholar
  28. 28.
    Sheridan, N.: On the Fukaya category of a Fano hypersurface in projective space. Publ. Math. de l’IHS 124, 165–317 (2016)MathSciNetMATHGoogle Scholar
  29. 29.
    Sjamaar, R., Lerman, E.: Stratified symplectic spaces and reduction. Ann. Math. 2(134), 375–422 (1991)MathSciNetMATHGoogle Scholar
  30. 30.
    Smith, I.: Floer cohomology and pencils of quadrics. Invent. Math. 189, 149–250 (2012)MathSciNetMATHGoogle Scholar
  31. 31.
    Stasheff, J.: \(H\)-spaces from a homotopy point of view. Lecture Notes in Mathematics, vol. 161. Springer, Berlin (1970)Google Scholar
  32. 32.
    Wehrheim, K., Woodward, C.: Exact triangle for fibered Dehn twists. Res. Math. Sci. 3, 17 (2016)MathSciNetMATHGoogle Scholar
  33. 33.
    Wehrheim, K., Woodward, C.: Pseudoholomorphic quilts. J. Symp. Geom. 13, 745–764 (2015)MathSciNetMATHGoogle Scholar
  34. 34.
    Wehrheim, K., Woodward, C.: Quilted Floer cohomology. Geom. Topol. 14, 833–902 (2010)MathSciNetMATHGoogle Scholar
  35. 35.
    Wehrheim, K., Woodward, C.T.: Quilted Floer trajectories with constant components: corrigendum to the article Quilted Floer cohomology. Geom. Topol. 16(1), 127–154 (2012)MathSciNetMATHGoogle Scholar
  36. 36.
    Wehrheim, K., Woodward, C.T.: Floer field theory for coprime rank and degree. arXiv:1601.04924
  37. 37.
    Wehrheim, K., Woodward, C.T.: Floer field theory for tangles. arXiv:1503.07615
  38. 38.
    Wehrheim, K., Woodward, C.T.: Orientations for pseudoholomorphic quilts. arXiv:1503.07803
  39. 39.
    Wehrheim, K., Woodward, C.T.: Functoriality for Lagrangian correspondences in Floer theory. Quantum Topol. 1(2), 129–170 (2010)MathSciNetMATHGoogle Scholar
  40. 40.
    Wehrheim, K., Woodward, C.T.: Floer cohomology and geometric composition of Lagrangian correspondences. Adv. Math. 230(1), 177–228 (2012)MathSciNetMATHGoogle Scholar
  41. 41.
    Woodward, C.: Gauged Floer theory of toric moment fibers. Geom. Funct. Anal. 21, 680–749 (2011)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.VeniceItaly
  2. 2.Department of Mathematics, University of CaliforniaBerkeleyUSA
  3. 3.Department of MathematicsRutgers UniversityPiscatawayUSA

Personalised recommendations