Matrix-Ball Construction of affine Robinson–Schensted correspondence


In his study of Kazhdan–Lusztig cells in affine type A, Shi has introduced an affine analog of Robinson–Schensted correspondence. We generalize the Matrix-Ball Construction of Viennot and Fulton to give a more combinatorial realization of Shi’s algorithm. As a byproduct, we also give a way to realize the affine correspondence via the usual Robinson–Schensted bumping algorithm. Next, inspired by Lusztig and Xi, we extend the algorithm to a bijection between the extended affine symmetric group and collection of triples \((P, Q, \rho )\) where P and Q are tabloids and \(\rho \) is a dominant weight. The weights \(\rho \) get a natural interpretation in terms of the Affine Matrix-Ball Construction. Finally, we prove that fibers of the inverse map possess a Weyl group symmetry, explaining the dominance condition on weights.

This is a preview of subscription content, log in to check access.


  1. 1.

    Ariki, S.: Robinson–Schensted correspondence and left cells. arXiv:math/9910117 (1999)

  2. 2.

    Barbasch, D., Vogan, D.: Primitive ideals and orbital integrals in complex classical groups. Math. Ann. 259, 153–199 (1982)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Bergman, G.M.: The diamond lemma for ring theory. Adv. Math. 29(2), 178–218 (1978)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Britz, T., Fomin, S.: Finite posets and Ferrers shapes. Adv. Math. 158(1), 86–127 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Chmutov, M.: Affine Matrix-Ball Construction Java program. (2015)

  6. 6.

    Fulton, W.: Young tableaux: with applications to representation theory and geometry, Volume 35 of London Mathematical Society Student Texts. Cambridge University Press (1997)

  7. 7.

    Garsia, A.M., McLarnan, T.J.: Relations between Young’s natural and the Kazhdan–Lusztig representations of \(S_n\). Adv. Math. 69(1), 32–92 (1988)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Greene, C., Kleitman, D.J.: The structure of Sperner \(k\)-families. J. Comb. Theory Ser. A 20(1), 41–68 (1976)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Honeywill, T.: Combinatorics and Algorithms Associated with the Theory of Kazhdan–Lusztig Cells. PhD thesis, University of Warwick (2005)

  10. 10.

    Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53, 165–184 (1989)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Lusztig, G.: Cells in affine Weyl groups, IV. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36(2), 297–328 (1989)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Pak, I.: Periodic permutations and the Robinson–Schensted correspondence. (2003)

  13. 13.

    Shi, J. Y.: Kazhdan–Lusztig cells of certain affine Weyl groups. Volume 1179 of Lecture Notes in Mathematics. Springer (1986)

  14. 14.

    Shi, J.Y.: The generalized Robinson–Schensted algorithm on the affine Weyl group of type \(A_{n-1}\). J. Algebra 139(2), 364–394 (1991)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Stanley, R. P.: Enumerative combinatorics, vol. 2. Volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1999). With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin

  16. 16.

    Viennot, G.: Une forme géométrique de la correspondance de Robinson–Schensted. Combinatoire et représentation du groupe symétrique 29–58 (1977)

  17. 17.

    Xi, N.: The Based Ring of Two-Sided Cells of Affine Weyl Groups of Type \(A_{n-1}\). Volume 749 of Memoirs of the American Mathematical Society. American Mathematical Society (2002)

Download references


The authors are grateful to Joel Lewis and an anonymous referee for reading the paper and providing valuable feedback, and to Darij Grinberg for helpful comments.

Author information



Corresponding author

Correspondence to Michael Chmutov.

Additional information

In memory of V. A. Yasinskiy.

MC was partially supported by NSF Grants DMS-1148634 and DMS-1503119; PP was partially supported by NSF Grants DMS-1148634, DMS-1351590, and Sloan Fellowship.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chmutov, M., Pylyavskyy, P. & Yudovina, E. Matrix-Ball Construction of affine Robinson–Schensted correspondence. Sel. Math. New Ser. 24, 667–750 (2018).

Download citation


  • Affine Weyl group
  • Kazhdan–Lusztig cells
  • Matrix-Ball Construction
  • Robinson–Schensted correspondence

Mathematics Subject Classification

  • 05E10
  • 20C08