## Abstract

The category \(\mathrm{MHT}_{\mathbb {Q}}\) of mixed Hodge–Tate structures over \({\mathbb {Q}}\) is a mixed Tate category. Thanks to the Tannakian formalism it is equivalent to the category of graded comodules over a commutative graded Hopf algebra \({{{\mathcal {H}}}}_\bullet = \oplus _{n=0}^\infty {{{\mathcal {H}}}}_n\) over \({\mathbb {Q}}\). Since the category \(\mathrm{MHT}_{\mathbb {Q}}\) has homological dimension one, \({{{\mathcal {H}}}}_\bullet \) is isomorphic to the commutative graded Hopf algebra provided by the tensor algebra of the graded vector space given by the sum of \(\mathrm{Ext}_{\mathrm{MHT}_{\mathbb {Q}}}^1({\mathbb {Q}}(0), {\mathbb {Q}}(n)) = {\mathbb {C}}/(2\pi i)^n{\mathbb {Q}}\) over \(n>0\). However this isomorphism is not natural in any sense, e.g. does not exist in families. We give a natural construction of the Hopf algebra \({{{\mathcal {H}}}}_\bullet \). Namely, let \({\mathbb {C}}^*_{\mathbb {Q}}:={\mathbb {C}}^* \otimes {\mathbb {Q}}\). Set

We provide it with a commutative graded Hopf algebra structure, such that \({{{\mathcal {H}}}}_\bullet = {{{\mathcal {A}}}}_\bullet ({\mathbb {C}})\). This implies another construction of the big period map \({{{\mathcal {H}}}}_n \longrightarrow {\mathbb {C}}_{\mathbb {Q}}^* \otimes {\mathbb {C}}\) from Goncharov (JAMS 12(2):569–618, 1999. arXiv:alg-geom/9601021, Annales de la Faculte des Sciences de Toulouse XXV(2–3):397–459, 2016. arXiv:1510.07270). Generalizing this, we introduce a notion of a Tate dg-algebra (*R*, *k*(1)), and assign to it a Hopf dg-algebra \({{{\mathcal {A}}}}_\bullet (R)\). For example, the Tate algebra \(({\mathbb {C}}, 2\pi i {\mathbb {Q}})\) gives rise to the Hopf algebra \(\mathcal{A}_\bullet ({\mathbb {C}})\). Another example of a Tate dg-algebra \((\Omega _X^\bullet , 2\pi i{\mathbb {Q}})\) is provided by the holomorphic de Rham complex \(\Omega _X^\bullet \) of a complex manifold *X*. The sheaf of Hopf dg-algebras \({{{\mathcal {A}}}}_\bullet (\Omega _X^\bullet )\) describes a dg-model of the derived category of variations of Hodge–Tate structures on *X*. The cobar complex of \(\mathcal{A}_\bullet (\Omega _X^\bullet )\) is a dg-model for the rational Deligne cohomology of *X*. We consider a variant of our construction which starting from Fontaine’s period rings \(\mathrm{B}_{\mathrm{crys}}\)/\(\mathrm{B}_{\mathrm{st}}\) produces graded/dg Hopf algebras which we relate to the p-adic Hodge theory.

### Similar content being viewed by others

## References

Anschütz, J.: Breuil–Kisin–Fargues modules with complex multiplication. arXiv:1707.08857

Beilinson, A.A., Deligne, P.: Unpublished notes on polylogarithms (1992)

Beilinson, A.A.: Higher regulators and values of L-functions. J. Soviet Math.

**30**, 2036–2070 (1985)Beilinson, A.A.: Notes on the absolute Hodge cohomology. Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory, Part I, II (Boulder, Colo., 1983). Contemporary Mathematics, vol. 55, pp. 35–68. American Mathematical Society, Providence, RI (1986)

Beilinson, A.A., Goncharov, A.B., Schechtman, V.V, Varchenko, A.N.: Aomoto dilogarithms, mixed Hodge structures and motivic cohomology of pairs of triangles on the plane. The Grothendieck Festschrift, vol. I, pp. 135–172. Prog. Math.

**86**. Birkhauser Boston, Boston, MA (1990)Bhatt, B., Morrow, P., Scholze P.: Integral p-adic Hodge theory. arXiv:1602.03148

Bloch, S.: Applications of the dilogarithm function in algebraic K-theory and algebraic geometry. Proceedings of the International Symposium on Algebraic Geometry, Kyoto, Kinokuniyo Book Store Ltd., Tokyo, Japan (1977)

Bloch, S.: Higher regulators, algebraic K-theory, and zeta functions of elliptic curves. Irvine lecture notes. CRM monograph series. AMS (2000). Original preprint of 1978

Deligne, P., Goncharov, A.B.: Groupes fondamentaux motiviques de Tate mixte. Ann. Sci. Cole Norm. Sup. (4)

**38**(1), 1–56 (2005)Fargues, L.: Quelques résultats et conjectures concernant la courbe. https://webusers.imj-prg.fr/laurent.fargues/Prepublications.html

Goncharov, A.B.: Polylogarithms in arithmetic and geometry. Proceedings of the International Congress of Mathematicians. (Zürich, 1994), vol. 1, pp. 374–387. http://users.math.yale.edu/users/goncharov/icm.pdf (1995)

Goncharov, A.B.: Volumes of hyperbolic manifolds and mixed Tate motives. JAMS

**12**(2), 569–618 (1999) arXiv:alg-geom/9601021Goncharov, A.B., Zhu, G.: A paper in preparation

Goncharov, A.B.: Exponential complexes, period morphisms, and characteristic classes. Annales de la Faculte des Sciences de Toulouse

**XXV**(2–3), 397–459 (2016). arXiv:1510.07270Nekovar, J., Niziol, W.: Syntomic cohomology and p-adic regulators for varieties over p-adic fields. arXiv:1309.7620

Niziol, W.: Geometric syntomic cohomology and vector bundles on the Fargues–Fontaine curve. arXiv:1605.07216

Niziol, W.: On syntomic regulators I: constructions. arXiv:1607.04975

## Author information

### Authors and Affiliations

### Corresponding author

## Additional information

To Alexander Beilinson, for his 60th birthday.

## Rights and permissions

## About this article

### Cite this article

Goncharov, A., Zhu, G. The Galois group of the category of mixed Hodge–Tate structures.
*Sel. Math. New Ser.* **24**, 303–358 (2018). https://doi.org/10.1007/s00029-018-0393-3

Published:

Issue Date:

DOI: https://doi.org/10.1007/s00029-018-0393-3