Skip to main content
Log in

The Galois group of the category of mixed Hodge–Tate structures

  • Published:
Selecta Mathematica Aims and scope Submit manuscript


The category \(\mathrm{MHT}_{\mathbb {Q}}\) of mixed Hodge–Tate structures over \({\mathbb {Q}}\) is a mixed Tate category. Thanks to the Tannakian formalism it is equivalent to the category of graded comodules over a commutative graded Hopf algebra \({{{\mathcal {H}}}}_\bullet = \oplus _{n=0}^\infty {{{\mathcal {H}}}}_n\) over \({\mathbb {Q}}\). Since the category \(\mathrm{MHT}_{\mathbb {Q}}\) has homological dimension one, \({{{\mathcal {H}}}}_\bullet \) is isomorphic to the commutative graded Hopf algebra provided by the tensor algebra of the graded vector space given by the sum of \(\mathrm{Ext}_{\mathrm{MHT}_{\mathbb {Q}}}^1({\mathbb {Q}}(0), {\mathbb {Q}}(n)) = {\mathbb {C}}/(2\pi i)^n{\mathbb {Q}}\) over \(n>0\). However this isomorphism is not natural in any sense, e.g. does not exist in families. We give a natural construction of the Hopf algebra \({{{\mathcal {H}}}}_\bullet \). Namely, let \({\mathbb {C}}^*_{\mathbb {Q}}:={\mathbb {C}}^* \otimes {\mathbb {Q}}\). Set

$$\begin{aligned} {{{\mathcal {A}}}}_\bullet ({\mathbb {C}}):= {\mathbb {Q}}\oplus \bigoplus _{n=1}^\infty {\mathbb {C}}_{\mathbb {Q}}^* \otimes _{\mathbb {Q}}{\mathbb {C}}^{\otimes n-1}. \end{aligned}$$

We provide it with a commutative graded Hopf algebra structure, such that \({{{\mathcal {H}}}}_\bullet = {{{\mathcal {A}}}}_\bullet ({\mathbb {C}})\). This implies another construction of the big period map \({{{\mathcal {H}}}}_n \longrightarrow {\mathbb {C}}_{\mathbb {Q}}^* \otimes {\mathbb {C}}\) from Goncharov (JAMS 12(2):569–618, 1999. arXiv:alg-geom/9601021, Annales de la Faculte des Sciences de Toulouse XXV(2–3):397–459, 2016. arXiv:1510.07270). Generalizing this, we introduce a notion of a Tate dg-algebra (Rk(1)), and assign to it a Hopf dg-algebra \({{{\mathcal {A}}}}_\bullet (R)\). For example, the Tate algebra \(({\mathbb {C}}, 2\pi i {\mathbb {Q}})\) gives rise to the Hopf algebra \(\mathcal{A}_\bullet ({\mathbb {C}})\). Another example of a Tate dg-algebra \((\Omega _X^\bullet , 2\pi i{\mathbb {Q}})\) is provided by the holomorphic de Rham complex \(\Omega _X^\bullet \) of a complex manifold X. The sheaf of Hopf dg-algebras \({{{\mathcal {A}}}}_\bullet (\Omega _X^\bullet )\) describes a dg-model of the derived category of variations of Hodge–Tate structures on X. The cobar complex of \(\mathcal{A}_\bullet (\Omega _X^\bullet )\) is a dg-model for the rational Deligne cohomology of X. We consider a variant of our construction which starting from Fontaine’s period rings \(\mathrm{B}_{\mathrm{crys}}\)/\(\mathrm{B}_{\mathrm{st}}\) produces graded/dg Hopf algebras which we relate to the p-adic Hodge theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Anschütz, J.: Breuil–Kisin–Fargues modules with complex multiplication. arXiv:1707.08857

  2. Beilinson, A.A., Deligne, P.: Unpublished notes on polylogarithms (1992)

  3. Beilinson, A.A.: Higher regulators and values of L-functions. J. Soviet Math. 30, 2036–2070 (1985)

    Article  MATH  Google Scholar 

  4. Beilinson, A.A.: Notes on the absolute Hodge cohomology. Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory, Part I, II (Boulder, Colo., 1983). Contemporary Mathematics, vol. 55, pp. 35–68. American Mathematical Society, Providence, RI (1986)

  5. Beilinson, A.A., Goncharov, A.B., Schechtman, V.V, Varchenko, A.N.: Aomoto dilogarithms, mixed Hodge structures and motivic cohomology of pairs of triangles on the plane. The Grothendieck Festschrift, vol. I, pp. 135–172. Prog. Math. 86. Birkhauser Boston, Boston, MA (1990)

  6. Bhatt, B., Morrow, P., Scholze P.: Integral p-adic Hodge theory. arXiv:1602.03148

  7. Bloch, S.: Applications of the dilogarithm function in algebraic K-theory and algebraic geometry. Proceedings of the International Symposium on Algebraic Geometry, Kyoto, Kinokuniyo Book Store Ltd., Tokyo, Japan (1977)

  8. Bloch, S.: Higher regulators, algebraic K-theory, and zeta functions of elliptic curves. Irvine lecture notes. CRM monograph series. AMS (2000). Original preprint of 1978

  9. Deligne, P., Goncharov, A.B.: Groupes fondamentaux motiviques de Tate mixte. Ann. Sci. Cole Norm. Sup. (4) 38(1), 1–56 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fargues, L.: Quelques résultats et conjectures concernant la courbe.

  11. Goncharov, A.B.: Polylogarithms in arithmetic and geometry. Proceedings of the International Congress of Mathematicians. (Zürich, 1994), vol. 1, pp. 374–387. (1995)

  12. Goncharov, A.B.: Volumes of hyperbolic manifolds and mixed Tate motives. JAMS 12(2), 569–618 (1999) arXiv:alg-geom/9601021

  13. Goncharov, A.B., Zhu, G.: A paper in preparation

  14. Goncharov, A.B.: Exponential complexes, period morphisms, and characteristic classes. Annales de la Faculte des Sciences de Toulouse XXV(2–3), 397–459 (2016). arXiv:1510.07270

    MATH  Google Scholar 

  15. Nekovar, J., Niziol, W.: Syntomic cohomology and p-adic regulators for varieties over p-adic fields. arXiv:1309.7620

  16. Niziol, W.: Geometric syntomic cohomology and vector bundles on the Fargues–Fontaine curve. arXiv:1605.07216

  17. Niziol, W.: On syntomic regulators I: constructions. arXiv:1607.04975

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alexander Goncharov.

Additional information

To Alexander Beilinson, for his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goncharov, A., Zhu, G. The Galois group of the category of mixed Hodge–Tate structures. Sel. Math. New Ser. 24, 303–358 (2018).

Download citation

  • Published:

  • Issue Date:

  • DOI:

Mathematics Subject Classification