Skip to main content
Log in

Plane partitions with a “pit”: generating functions and representation theory

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We study plane partitions satisfying condition \(a_{n+1,m+1}=0\) (this condition is called “pit”) and asymptotic conditions along three coordinate axes. We find the formulas for generating function of such plane partitions. Such plane partitions label the basis vectors in certain representations of quantum toroidal \(\mathfrak {gl}_1\) algebra, therefore our formulas can be interpreted as the characters of these representations. The resulting formulas resemble formulas for characters of tensor representations of Lie superalgebra \(\mathfrak {gl}_{m|n}\). We discuss representation theoretic interpretation of our formulas using q-deformed W-algebra \(\mathfrak {gl}_{m|n}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aigner, M.: Lattice Paths and Determinants Computational Discrete Mathematics, Lecture Notes in Computer Science, vol. 2122, p. 112. Springer, Berlin (2001)

    Google Scholar 

  2. Barvinok, A.: Integer Points in Polyhedra. EMS, Zurich (2008)

    Book  MATH  Google Scholar 

  3. Beck, M., Haase, C., Sottile, F.: Formulas of Brion, Lawrence, and Varchenko on rational generating functions for cones. Math. Intell. 31(1), 9–17 (2009). [arXiv:math/0506466]

    Article  MathSciNet  MATH  Google Scholar 

  4. Berele, A., Regev, A.: Hook Young diagrams with applications to combinatorics and representations of Lie superalgebras. Adv. Math. 64, 118–175 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernstein, I.N., Gelfand, I.M., Gelfand, S.I.: Differential operators on the base affine space and a study of \(\mathfrak{g}\)-modules, Gelfand, I.M. (ed.), Lie groups and their representations, Proc. Summer School on Group Representations, Janos Bolyai Math. Soc. & Wiley pp. 39–64 (1975)

  6. Brion, M.: Points entiers dans les poly‘edres convexes. Ann. Sci. Ecole Norm. Sup. 21(4), 653–663 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burban, I., Schiffmann, O.: On the Hall algebra of an elliptic curve. Duke Math. J. 161(7), 1171–1231 (2012). [arXiv:math/0505148]

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng, S.-J., Kwon, J.-H., Lam, N.: A BGG-type resolution for tensor modules over general linear superalgebra. Lett. Math. Phys. 84(1), 75–87 (2008). [arXiv:0801.0914]

    Article  MathSciNet  MATH  Google Scholar 

  9. Feigin, B., Feigin, E., Jimbo, M., Miwa, T., Mukhin, E.: Quantum continuous \({\mathfrak{gl}}_{\infty }\): tensor product of Fock modules and \({W}_{n}\) characters. Kyoto J. Math. 51(2), 365–392 (2011). [arXiv:1002.3113]

    Article  MathSciNet  MATH  Google Scholar 

  10. Feigin, B., Frenkel, E.: Affine Kac–Moody algebras at the critical level and Gelfand–Dikii algebras. Int. J. Mod. Phys. A7(Supplement 1A), 197–215 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feigin, B., Frenkel, E.: Quantum W-algebras and elliptic algebras. Commun. Math. Phys. 178 3, 653–677 (1996). [arXiv:q-alg/9508009]

    Article  MathSciNet  MATH  Google Scholar 

  12. Feigin, B., Fuchs, D.: Representations of the Virasoro algebra. Representations of Lie groups and related topics, 465, Adv. Stud. Contemp. Math., 7, Gordon and Breach, New York (1990)

  13. Feigin, B., Hoshino, A., Shibahara, J., Shiraishi, J., Yanagida, S.: Kernel function and quantum algebras. RIMS kōkyūroku 1689, 133–152 (2010). [arXiv:1002.2485]

    Google Scholar 

  14. Feigin, B., Jimbo, M., Miwa, T., Odesskii, A., Pugai, Y.: Algebra of screening operators for the deformed \(W_n\) algebra. Commun. Math. Phys. 191 (3), 501–541 (1998). [arXiv:q-alg/9702029]

    Article  MATH  Google Scholar 

  15. Feigin, B., Jimbo, M., Miwa, T., Mukhin, E.: Quantum toroidal \(\mathfrak{gl}_1\) algebra: plane partitions. Kyoto J. Math. 52(3), 621–659 (2012). [arXiv:1110.5310]

    Article  MathSciNet  MATH  Google Scholar 

  16. Feigin, B., Jimbo, M., Miwa, T., Mukhin, E.: Quantum toroidal \(\mathfrak{gl} _1\) and Bethe ansatz. J. Phys. A48 24, 244001 (2015). [arXiv:1502.07194]

    MATH  Google Scholar 

  17. Feigin, B., Jimbo, M., Miwa, T., Mukhin, E.: Finite type modules and Bethe Ansatz for quantum toroidal \(\mathfrak{gl}(1)\). Commun. Math. Phys. 356 1, 285–327 (2017). [arXiv:1603.02675]

    Article  MATH  Google Scholar 

  18. Feigin, B., Makhlin, I.: A combinatorial formula for affine Hall–Littlewood Functions via a weighted Brion theorem. Sel. Math. (2016). [arXiv:1505.04269]

  19. Feigin, B., Mutafyan, G.: The quantum toroidal algebra \(\widehat{\widehat{\mathfrak{gl}_1}}\): calculation of characters of some representations as generating functions of plane partitions. Funct. Anal. Appl. 47(1), 50–61 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feigin, B., Mutafyan, G.: Characters of representations of the quantum toroidal algebra \(\widehat{\widehat{\mathfrak{gl}_1}}\): plane partitions with “stands”. Funct. Anal. Appl. 48(1), 36–48 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Feigin, B.L., Semikhatov, A.M.: \(W_n^{(2)}\) algebras. Nucl. Phys. B 698(3), 409–449 (2004). [arXiv:math/0401164]

    Article  MATH  Google Scholar 

  22. Gaiotto, D., Rapčák, M.: Vertex Algebras at the Corner. [arXiv:1703.00982]

  23. Gessel, I., Viennot, G.: Binomial determinants, paths, and Hook length formulae. Adv. Math. 58, 300–321 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jafferis, D.: Crystals and intersecting branes. [arXiv:hep-th/0607032]

  25. Jimbo, M., Lashkevich, M., Miwa, T., Pugai, Y.: Lukyanov’s screening operators for the deformed Virasoro algebra. Phys. Lett. A 229(5), 285–292. [arXiv:hep-th/9607177]

  26. Kac, V.G., Roan, S., Wakimoto, M.: Quantum reduction for affine superalgebras. Commun. Math. Phys. 241(2), 307–342 (2003). [arXiv:math-ph/0302015]

    Article  MathSciNet  MATH  Google Scholar 

  27. Kazhdan, D., Lusztig, G.: Tensor structures arising from affine Lie algebras, I. J. Am. Math. Soc. 6, 905–947 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kazhdan, D., Lusztig, G.: Tensor structures arising from affine Lie algebras, II. J. Am. Math. Soc. 6, 949–1011 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kazhdan, D., Lusztig, G.: Tensor structures arising from affine Lie algebras, III. J. Am. Math. Soc. 7, 335–381 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kazhdan, D., Lusztig, G.: Tensor structures arising from affine Lie algebras, IV. J. Am. Math. Soc. 7, 383–453 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Khovanskii, A.G., Pukhlikov, A.V.: Finitely additive measures of virtual polyhedra. St. Petersb. Math. J. 4(2), 337–356 (1993)

    MathSciNet  Google Scholar 

  32. Khovanskii, A.G., Pukhlikov, A.V.: The Riemann–Roch theorem for integrals and sums of quasipolynomials on virtual polytopes. St. Petersb. Math. J. 4(4), 789–812 (1993)

    MathSciNet  MATH  Google Scholar 

  33. Lascoux, A., Pragacz, P.: Ribbon Schur functions. Eur. J. Comb. 9(6), 561–574 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lawrence, J.: Rational-function-valued valuations on polyhedra. Discrete and computational geometry (New Brunswick, NJ, 1989/1990), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 6, Am. Math. Soc., Providence, RI, pp. 199–208 (1991)

  35. Lindström, B.: On the vector representation of induced matroids. Bull. Lond. Math. Soc. 5, 85–90 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  36. Litvinov, A., Spodyneiko, L.: On W algebras commuting with a set of screenings. JHEP, 138, (2016). [arXiv:1609.06271]

  37. Lukyanov, S.L., Fateev, V.A.: Additional symmetries and exactly soluble models in two-dimensional conformal field theory. Sov. Sci. Rev. A. Phys. 15, 1–117 (1990)

    Google Scholar 

  38. Makhlin, I.: Weyl’s formula as the Brion theorem for Gelfand–Tsetlin polytopes. Funct. Anal. Appl. 50(2), 98–106 (2016). [arXiv:1409.7996]

    Article  MathSciNet  MATH  Google Scholar 

  39. Macdonald, I.: Symmetric Functions and Hall Polynomials, 2nd edn. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  40. Moens, E.M., van der Jeugt, J.: A determinantal formula for supersymmetric Schur polynomials. J. Algebraic Comb. 17(3), 283–307 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Okounkov, A., Reshetikhin, N., Vafa, C.: Quantum Calabi–Yau and Classical Crystals. The unity of mathematics, 597–618, Progr. Math., 244, Birkhuser Boston. [arXiv:hep-th/0309208]

  42. Sergeev, A.N.: Representations of the Lie superalgebras \(\mathfrak{gl}(n, m)\) and \(Q(n)\) on the space of tensors. Funct. Anal. Appl. 18(1), 70–72 (1984)

    Article  MATH  Google Scholar 

  43. Shiraishi, J., Kubo, H., Awata, H., Odake, S.: A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions. Lett. Math. Phys. 38, 33 (1996). [arXiv:q-alg/9507034]

    Article  MathSciNet  MATH  Google Scholar 

  44. Stanley, R.P.: Enumerative Combinatorics, vol. 1. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  45. Tsymbaliuk, A.: The affine Yangian of \(gl_1\) revisited. Adv. Math. 304, 583–645 (2017). [arXiv:1404.5240]

    Article  MathSciNet  MATH  Google Scholar 

  46. Zelevinsky, A.V.: Resolutions, dual pairs, and character formulas. Funct. Anal. Appl. 21(2), 152–154 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Bershtein.

Additional information

To Sasha Beilinson on the occasion of his birthday. At least one of the authors owes him a lot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bershtein, M., Feigin, B. & Merzon, G. Plane partitions with a “pit”: generating functions and representation theory. Sel. Math. New Ser. 24, 21–62 (2018). https://doi.org/10.1007/s00029-018-0389-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-018-0389-z

Mathematics Subject Classification

Navigation