Skip to main content
Log in

On the classification of non-equal rank affine conformal embeddings and applications

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We complete the classification of conformal embeddings of a maximally reductive subalgebra \(\mathfrak {k}\) into a simple Lie algebra \(\mathfrak {g}\) at non-integrable non-critical levels k by dealing with the case when \(\mathfrak {k}\) has rank less than that of \(\mathfrak {g}\). We describe some remarkable instances of decomposition of the vertex algebra \(V_{k}(\mathfrak {g})\) as a module for the vertex subalgebra generated by \(\mathfrak {k}\). We discuss decompositions of conformal embeddings and constructions of new affine Howe dual pairs at negative levels. In particular, we study an example of conformal embeddings \(A_1 \times A_1 \hookrightarrow C_3\) at level \(k=-1/2\), and obtain explicit branching rules by applying certain q-series identity. In the analysis of conformal embedding \(A_1 \times D_4 \hookrightarrow C_8\) at level \(k=-1/2\) we detect subsingular vectors which do not appear in the branching rules of the classical Howe dual pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adamović, D., Perše, O.: Some general results on conformal embeddings of affine vertex operator algebras. Algebr. Represent. Theory 16(1), 51–64 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adamović, D., Kac, V.G., Moseneder Frajria, P., Papi, P., Perše, O.: Finite vs infinite decompositions in conformal embeddings. Commun. Math. Phys. 348, 445–473 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adamović, D., Kac, V.G., Moseneder Frajria, P., Papi, P., Perše, O.: Conformal embeddings of affine vertex algebras in minimal \(W\)-algebras I: Structural results. J. Algebra (2017). https://doi.org/10.1016/j.jalgebra.2016.12.005 (Special issue of J. Algebra in Honor of E. Zelmanov on occasion of his 60th anniversary)

  4. Adamović, D., Kac, V.G., Möseneder Frajria, P., Papi, P., Perše, O.: Conformal embeddings of affine vertex algebras in minimal \(W\)-algebras II: decompositions. Jpn. J. Math. 12(2), 261–315 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Adamović, D., Kac, V. G., Möseneder Frajria, P., Papi, P., Perše, O.: An application of collapsing levels to the representation theory of affine vertex algebras (in preparation)

  6. Adamović, D., Perše, O.: Fusion rules and complete reducibility of certain modules for affine Lie algebras. J. Algebra Appl. 13, 1350062 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Adamović, D., Perše, O.: The vertex algebra \(M(1)^+\) and certain affine vertex algebras of level \(-1\). SIGMA 8, 040 (2012). 16 pages

    MathSciNet  MATH  Google Scholar 

  8. Andreev, E.M., Vinberg, E.B., Elashvili, A.G.: Orbits of highest dimension of semisimple linear Lie groups. Funk. Anal. Prilož. 1(4), 3–7 (1967)

    MathSciNet  MATH  Google Scholar 

  9. Arcuri, R.C., Gomez, J.F., Olive, D.I.: Conformal subalgebras and symmetric spaces. Nucl. Phys. B 285(2), 327–339 (1987)

    Article  MathSciNet  Google Scholar 

  10. Arakawa, T., Kawasetsu, K.: Quasi-lisse vertex algebras and modular linear differential equations. Kostant Memorial Volume, Birkhäuser (to appear). arXiv:1610.05865

  11. Arakawa, T., Moreau, A.: Joseph ideals and lisse minimal \(W\)-algebras. J. Inst. Math. Jussieu (2016). arXiv:1506.00710

  12. Arakawa, T., Moreau, A.: Sheets and associated varieties of affine vertex algebras. Adv. Math. 320, 157–209 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Arakawa, T., Moreau, A.: On the irreducibility of associated varieties of \(W\)-algebras. J. Algebra (2017). https://doi.org/10.1016/j.jalgebra.2017.06.007 (Special issue of J. Algebra in Honor of E. Zelmanov on occasion of his 60th anniversary)

  14. Bourbaki, N.: Groups et algebres de Lie 1. Hermann (1971)

  15. Cellini, P., Kac, V.G., Möseneder Frajria, P., Papi, P.: Decomposition rules for conformal pairs associated to symmetric spaces and abelian subalgebras of \({\mathbb{Z}}_2\)-graded Lie algebras. Adv. Math. 207, 156–204 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. De Graaf, W.: SLA. http://www.science.unitn.it/~degraaf/sla.html

  17. Dynkin, E.B.: Maximal subgroups of the classical groups. Trudy Moscov. Mat. Obsh. 1, 39–166 (1952)

    MathSciNet  Google Scholar 

  18. Dynkin, E.B.: Semisimple subalgebras of semisimple Lie algebras. Mat. Sb. N.S. 30(72), 349–462 (1952)

    MathSciNet  MATH  Google Scholar 

  19. Gaiotto, D.: Twisted compactifications of 3d N = 4 theories and conformal blocks. arXiv:1611.01528

  20. Goddard, P., Nahm, W., Olive, D.: Symmetric spaces, Sugawara energy momentum tensor in two dimensions and free fermions. Phys. Lett. B 160, 111–116 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kac, V.G.: Lie superalgebras. Adv. Math. 26(1), 8–96 (1977)

    Article  MATH  Google Scholar 

  22. Howe, R.: Remarks on classical invariant theory. Trans. Am. Math. Soc. 313, 539–570 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gorelik, M., Kac, V.G.: On simplicity of vacuum modules. Adv. Math. 211, 621–677 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kac, V.G., Sanielevici, M.: Decomposition of representations of exceptional affine algebras with respect to conformal subalgebras. Phys. Rev. D 37(8), 2231–2237 (1988)

    Article  MathSciNet  Google Scholar 

  25. Kac, V.G., Wakimoto, M.: Modular and conformal invariance constraints in representation theory of affine algebras. Adv. Math. 70, 156–236 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kac, V.G., Wakimoto, M.: Integrable highest weight modules over affine superalgebras and number theory. In: Brylinski, J.-L., Brylinski, R., Guillemin, V., Kac, V. (Eds.) Lie Theory andGeometry, Progress in Mathematics, vol. 123, pp. 415–456. Birkhäuser, Boston (1994)

  27. Kac, V.G., Möseneder Frajria, P., Papi, P., Xu, F.: Conformal embeddings and simple current extensions. IMRN 14, 5229–5288 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kostant, B.: A cubic Dirac operator and the emergence of Euler number multiplets for equal rank subgroupps. Duke Math. J. 100(3), 447–501 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kostant, B.: The Weyl algebra and the structure of all Lie superalgebras of Riemannian type. Transform. Groups 6(3), 215–226 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lian, B.H., Linshaw, A.R.: Howe pairs in the theory of vertex algebras. J. Algebra 317, 111–152 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Linshaw, A.R., Schwarz, G.W., Song, B.: Arc spaces and the vertex algebra commutant problem. Adv. Math. 277, 338–364 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Minchenko, A.M.: Semisimple subalgebras of exceptional Lie algebras. Trans. Moscow Math. Soc. 67, 225–259 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Panyushev, D.: Isotropy representations, eigenvalues of a Casimir element, and commutative Lie algebras. J. Lond. Math. Soc. (2) 64, 61–80 (2001)

    Article  MATH  Google Scholar 

  34. Panyushev, D., Vinberg, E.: The work of Vladimir Morozov on Lie algebras. Transform. Groups 15(4), 1001–1013 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ono, K., Robins, S., Wahl, P.T.: On the representation of integers as sums of triangular numbers. Aequ. Math. 50, 73–94 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ostrik, V., Sun, M.: Level-rank duality via tensor categories. Commun. Math. Phys. 326, 49–61 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Perše, O.: A note on representations of some affine vertex algebras of type \(D\). Glas. Mat. Ser. III 48(1), 81–90 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schellekens, A.N., Warner, N.P.: Conformal subalgebras of Kac–Moody algebras. Phys. Rev. D (3) 34(10), 3092–3096 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was done in part during the authors’ stay at Erwin Schrödinger Institute in Vienna (January 2017). D.A. and O. P. are partially supported by the Croatian Science Foundation under the Project 2634 and by the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and European Union through the European Regional Development Fund—the Competitiveness and Cohesion Operational Programme (KK.01.1.1.01). We thank the referee for his/her careful reading of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Papi.

Additional information

To the memory of Bertram Kostant 5/24/1928–2/2/2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamović, D., Kac, V.G., Frajria, P.M. et al. On the classification of non-equal rank affine conformal embeddings and applications. Sel. Math. New Ser. 24, 2455–2498 (2018). https://doi.org/10.1007/s00029-017-0386-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-017-0386-7

Keywords

Mathematics Subject Classification

Navigation