Skip to main content

Rel leaves of the Arnoux–Yoccoz surfaces

A Correction to this article was published on 11 August 2021

This article has been updated

Abstract

We analyze the rel leaves of the Arnoux–Yoccoz translation surfaces. We show that for any genus \(\mathbf {g}\geqslant 3\), the leaf is dense in the connected component of the stratum \({\mathcal {H}}(\mathbf {g}-1 ,\mathbf {g}-1)\) to which it belongs, and the one-sided imaginary-rel trajectory of the surface is divergent. For one surface on this trajectory, namely the Arnoux–Yoccoz surface itself, the horizontal foliation is invariant under a pseudo-Anosov map (and in particular is uniquely ergodic), but for all other surfaces, the horizontal foliation is completely periodic. The appendix proves a field theoretic result needed for denseness of the leaf: for any \(n \geqslant 3\), the field extension of \({\mathbb {Q}}\) obtained by adjoining a root of \(X^n-X^{n-1}-\cdots -X-1\) has no totally real subfields other than \({\mathbb {Q}}\).

This is a preview of subscription content, access via your institution.

Change history

References

  1. 1.

    Arnoux, P.: Un exemple de semi-conjugaison entre un échange d’intervalles et une translation sur le tore. Bull. Soc. Math. France 116, 489–500 (1988)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Arnoux, P., Yoccoz, J.C.: Construction de difféomorphismes pseudo-Anosov. C. R. Acad. Sci. Paris 292(1), 75–78 (1981)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Avila, A., Eskin, A., Möller, M.: Symplectic and isometric \(\text{SL}_2({\mathbb{R}})\)-invariant subbundles of the Hodge bundle, preprint (2014)

  4. 4.

    Avila, A., Hubert, P., Skripchenko, A.: Diffusion for chaotic plane sections of 3-periodic surfaces. Invent. Math. 206(1), 109–146 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Bainbridge, M.: Euler characteristics of Teichmüller curves in genus two. Geom. Topol. 11, 1887–2073 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Bainbridge, M., Smillie, J., Weiss, B.: Horocycle dynamics: new invariants and eigenform loci in the stratum \({\cal{H}}(1,1)\), preprint (2016). arXiv:1603.00808

  7. 7.

    Boshernitzan, M.D.: Rank two interval exchange transformations. Ergod. Theory Dyn. Syst. 8(03), 379–394 (1988)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Bowman, J.: The complete family of Arnoux–Yoccoz surfaces. Geom. Dedic. 164(1), 113–130 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Bowman, J.: Orientation-reversing involutions of the genus 3 Arnoux-Yoccoz surface and related surfaces. In: Bonk, M., Gilman, J., Masur, H., Minsky, Y., Wolf, M. (eds.) The Tradition of Ahlfors–Bers. V, vol. 510 of Contemporary Mathematics, pp. 13–23. American Mathematical Society, Providence, RI (2010)

    Google Scholar 

  10. 10.

    Calsamiglia, G., Deroin, B., Francaviglia, S.: A transfer principle: from periods to isoperiodic foliations, arXiv:1511.07635

  11. 11.

    De Leo, R., Dynnikov, I.A.: Geometry of plane sections of the infinite regular skew polyhedron \(\{ 4, 6|4\}\). Geom. Dedic. 138, 51–67 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Delecroix, V., Patrick Hooper, W.: sage-flatsurf. https://github.com/videlec/sage-flatsurf. Accessed 12 Aug 2016

  13. 13.

    Dynnikov, I.A.: Semiclassical motion of the electron. A proof of the Novikov conjecture in general position and counterexamples. In: Solitons, Geometry, and Topology: On the Crossroad

  14. 14.

    Dynnikov, I.A.: Stability of minimal interval exchange transformations, Conference lecture, Dynamics and Geometry in Teichmüller Space, CIRM, 7-7-2015

  15. 15.

    Dynnikov, I.A., Skripchenko, A.: Symmetric band complexes of thin type and chaotic sections which are not quite chaotic. Trans. Mosc. Math. Soc. 76, 251–269 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Einsiedler, M., Ward, T.: Ergodic theory with a view toward number theory, Graduate texts in math. 259 (2011)

  17. 17.

    Eskin, A., Mirzakhani, M.: Invariant and stationary measures for the \(\text{ SL }(2,{\mathbb{R}})\) action on moduli space

  18. 18.

    Eskin, A., Mirzakhani, M., Mohammadi, A.: Isolation theorems for \(\text{ SL }_2({\mathbb{R}})\)-invariant submanifolds in moduli space (preprint) (2013)

  19. 19.

    Fathi, A., Laudenbach, F., Poénaru, V.: Thurston’s work on surfaces, Translated from the 1979 French original by D. M. Kim and D. Margalit. Mathematical Notes, 48, Princeton University Press (2012)

  20. 20.

    Filip, S.: Semisimplicity and rigidity of the Kontsevich-Zorich cocycle. Invent. Math. 205(3), 617–670 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Hamenstädt, U.: Ergodicity of the absolute period foliation. Isr. J. Math. (to appear)

  22. 22.

    Hubert, P., Lanneau, E.: An introduction to Veech surfaces. Handbook of dynamical systems 1, 501–526 (2006)

  23. 23.

    Hooper, W.P., Weiss, B.: The rel leaf and real-rel ray of the Arnoux-Yoccoz surface in genus 3. arXiv:1506.06773

  24. 24.

    Hubert, P., Lanneau, E., Möller, M.: The Arnoux–Yoccoz Teichmüller disc. Geom. Func. Anal. (GAFA) 18(6), 1988–2016 (2009)

    Article  MATH  Google Scholar 

  25. 25.

    Kenyon, R., Smillie, J.: Billiards in rational-angled triangles. Comment. Math. Helv. 75, 65–108 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Kontsevich, M., Zorich, A.: Connected components of the moduli spaces of Abelian differentials with prescribed singularities. Invent. Math. 153(3), 631–678 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Lang, S.: Algebra, Graduate Texts in Mathematics. Springer, New York (2002)

    Google Scholar 

  28. 28.

    Lelièvre, S., Weiss, B.: Surfaces with no convex presentations. GAFA 25, 1902–1936 (2015)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Lowenstein, J.H., Poggiaspalla, G., Vivaldi, F.: Interval exchange transformations over algebraic number fields: the cubic Arnoux–Yoccoz model. Dyn. Syst. 22, 73–106 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Martin, P.A.: The Galois group of \(x^n - x^{n-1} -... - 1\). J. Pure Appl. Algebra 190(1–3), 213–223 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Masur, H.: Interval exchange transformations and measured foliations. Ann. Math. 2nd Ser. 115(1), 169–200 (1982)

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Masur, H., Tabachnikov, S.: Rational billiards and flat structures. In: Handbook of dynamical systems. Enc. Math. Sci. Ser. (2001)

  33. 33.

    McMullen, C.T.: Teichmüller geodesics of infinite complexity. Acta Math. 191, 191–223 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    McMullen, C.T.: Dynamics of \(\text{ SL }_2({\mathbb{R}})\) over moduli space in genus two. Ann. Math. 165, 397–456 (2007)

    MathSciNet  Article  Google Scholar 

  35. 35.

    McMullen, C.T.: Foliations of Hilbert modular surfaces. Am. J. Math. 129, 183–215 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    McMullen, C.T.: Navigating moduli space with complex twists. J. Eur. Math. Soc. (JEMS) 15, 1223–1243 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  37. 37.

    McMullen, C.T.: Moduli spaces of isoperiodic forms on Riemann surfaces. Duke Math. J. 163, 2271–2323 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  38. 38.

    McMullen, C.T.: Cascades in the dynamics of measured foliations. Ann. Sci. l’ENS 48, 1–39 (2015)

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Minsky, Y., Weiss, B.: Cohomology classes represented by measured foliations, and Mahler’s question for interval exchanges. Ann. Sci. l’ENS 47 (2014)

  40. 40.

    Mirzakhani, M., Wright, A.: Full rank affine invariant submanifolds, preprint (2016). arXiv:1608.02147

  41. 41.

    Möller, M.: Variations of Hodge structures of a Teichmüller curve. J. Am. Math. Soc. 19, 327–344 (2006)

    Article  MATH  Google Scholar 

  42. 42.

    Rauzy, G.: Nombres algébriques et substitutions. Bull. Soc. Math. France 110, 147–178 (1982)

    MathSciNet  Article  MATH  Google Scholar 

  43. 43.

    Ribes, L., Zalesskii, P.: Profinite Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 40. https://doi.org/10.1007/978-3-642-01642-4, \(\copyright \) Springer-Verlag Berlin Heidelberg 2010

  44. 44.

    Schmoll, M.: Spaces of elliptic differentials. In: Kolyada, S., Manin, Y.I., Ward, T. (eds.) Algebraic and topological dynamics. Cont. Math., vol. 385, pp. 303–320 (2005)

  45. 45.

    Smillie, J., Weiss, B.: Minimal sets for flows on moduli space. Isr. J. Math. 142, 249–260 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  46. 46.

    Thurston, W.: On the geometry and dynamics of diffeomorphisms of surfaces. Bull. AMS (new series) 19(2), 417–431 (1988)

    MathSciNet  Article  MATH  Google Scholar 

  47. 47.

    Veech, W.A.: Gauss measures for transformations on the space of interval exchange maps. Ann. Math. 201–242 (1982)

  48. 48.

    Veech, W.A.: Measures supported on the set of uniquely ergodic directions of an arbitrary holomorohic 1-form. Ergod. Theory Dyn. Syst. 19, 1093–1109 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  49. 49.

    Weiss, B.: Dynamics on parameter spaces: submanifold and fractal subset questions. In: Burger, M., Iozzi, A. (eds.) Rigidity in Dynamics and Geometry, pp. 425–440. Springer, Berlin (2002)

    Chapter  Google Scholar 

  50. 50.

    Wright, A.: The field of definition of affine invariant submanifolds of the moduli space of abelian differentials. Geom. Top. (2014)

  51. 51.

    Wright, A.: Translation surfaces and their orbit closures: an introduction for a broad audience. EMS Surv. Math. Sci. 2(1), 63–108 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  52. 52.

    Zorich, A.: Flat surfaces. In: Cartier, P., Julia, B., Moussa, P., Vanhove, P. (eds.) Frontiers in Number Theory, Physics and Geometry. Springer, Berlin (2006)

    Google Scholar 

Download references

Acknowledgements

This work was stimulated by insightful comments of Michael Boshernitzan, who conjectured Corollary 1.6. We thank Alex Wright for directing our attention to the case \(\mathbf {g}=2\) and for his proofs of Theorems 1.9 and 5.3. Theorem 1.4, which is a crucial step in our proof of Theorem 1.8, was proved in response to our queries by Lior Bary-Soroker, Mark Shusterman, and Umberto Zannier. We thank them for agreeing to include their results in Appendix A of this paper. We thank Ivan Dynnikov, Pascal Hubert and Sasha Skripchenko for pointing out the connections to their prior work and other insightful remarks. We are also grateful to David Aulicino, Josh Bowman, Duc-Manh Nguyen and John Smillie for useful discussions. We also are grateful to the anonymous referee for useful comments which helped to improve the paper. This collaboration was supported by BSF Grant 2010428. The first author’s work is supported by NSF Grant DMS-1500965 as well as a PSC-CUNY Award (funded by The Professional Staff Congress and The City University of New York). The second author’s work was supported by ERC starter Grant DLGAPS 279893. Appendix acknowledgements We are grateful to Barak Weiss for telling us about the problem of finding the maximal totally real subfields of number fields arising in dynamics. Special thanks go to Patrick Hooper whose computer verification of Corollary A.8 for all \(n \leqslant 1000\) greatly stimulated our work. We would also like to thank Moshe Jarden for his comments on drafts of this work. The first and second appendix authors were partially supported by the Israel Science Foundation Grant No. 952/14. The third appendix author was partially supported by the ERC-Advanced Grant “Diophantine problems” (Grant Agreement No. 267273).

Author information

Affiliations

Authors

Corresponding author

Correspondence to W. Patrick Hooper.

Additional information

With an Appendix by Lior Bary-Soroker (Tel Aviv University, barylior@post.tau.ac.il), Mark Shusterman (Tel Aviv University, markshus@post.tau.ac.il), and Umberto Zannier (Scuola Normale Superiore, u.zannier@sns.it).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hooper, W.P., Weiss, B. Rel leaves of the Arnoux–Yoccoz surfaces. Sel. Math. New Ser. 24, 875–934 (2018). https://doi.org/10.1007/s00029-017-0367-x

Download citation

Mathematics Subject Classification

  • 37Exx