Selecta Mathematica

, Volume 24, Issue 2, pp 1093–1119 | Cite as

Cohomological Hall algebras and affine quantum groups

  • Yaping Yang
  • Gufang Zhao


We study the preprojective cohomological Hall algebra (CoHA) introduced by the authors in Yang and Zhao (The cohomological Hall algebra of a preprojective algebra. arXiv: 1407.7994v5, 2015) for any quiver Q and any one-parameter formal group \({\mathbb {G}}\). In this paper, we construct a comultiplication on the CoHA, making it a bialgebra. We also construct the Drinfeld double of the CoHA. The Drinfeld double is a quantum affine algebra of the Lie algebra \(\mathfrak {g}_Q\) associated to Q, whose quantization comes from the formal group \({\mathbb G}\). We prove, when the group \({\mathbb G}\) is the additive group, the Drinfeld double of the CoHA is isomorphic to the Yangian.


Quantum group Shuffle algebra Hall algebra Yangian Drinfeld double 

Mathematics Subject Classification

Primary 17B37 Secondary 14F43 55N22 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the anonymous referee for helpful comments. Most of the work was done when both authors were temporary faculty members at the University of Massachusetts, Amherst.


  1. 1.
    Calmès, B., Zainoulline, K., Zhong, C.: Equivariant oriented cohomology of flag varieties, Documenta Math. Extra Volume: Alexander S. Merkurjev’s Sixtieth Birthday, pp. 113–144. arXiv:1409.7111 (2015)
  2. 2.
    Dai, S., Levine, M.: Connective algebraic K-theory. J. K Theory 13(1), 9–56 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dou, R., Jiang, Y., Xiao, J.: The Hall algebra approach to Drinfeld’s presentation of quantum loop algebras. Adv. Math. 231(5), 2593–2625 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Drinfeld, V.G.: Quantum groups. Proceedings of the International Congress of Mathematicians 1986, vol. 1, pp. 798–820. AMS (1987)Google Scholar
  5. 5.
    Felder, G.: Elliptic quantum groups. XIth International Congress of Mathematical Physics (Paris, 1994), pp. 211–218. Int. Press, Cambridge (1995)Google Scholar
  6. 6.
    Gautam, S., Toledano Laredo, V.: Meromorphic tensor equivalence for Yangians and quantum loop algebras. Publ. Math IHES (to appear). arXiv:1403.5251
  7. 7.
    Gautam, S., Toledano Laredo, V.: Elliptic quantum groups and their finite–dimensional representations. Preprint. arXiv:1707.06469 (2017)
  8. 8.
    Ginzburg, V., Kapranov, M., Vasserot, E.: Elliptic algebras and equivariant elliptic cohomology. Preprint. arXiv:hep-th/9505012 (1995)
  9. 9.
    Griffiths, P., Harris, J.: Principles of Algebraic Geometry, Reprint of the 1978 Original. Wiley Classics Library. Wiley, New York (1994)Google Scholar
  10. 10.
    Grojnowski, I.: Delocalized equivariant elliptic cohomology. Elliptic Cohomology, London Math. Soc. Lecture Note Ser., vol. 342, pp. 111–113. Cambridge University Press (2007)Google Scholar
  11. 11.
    Grojnowski, I.: Affinizing Quantum Algebras: From \(D\)-Modules to \(K\)-Theory. Preprint (1994)Google Scholar
  12. 12.
    Guay, N., Yang, Y., Zhao, G.: The PBW Theorem for Affine Yangians (in progress)Google Scholar
  13. 13.
    Heller, J., Malagón-López, J.: Equivariant algebraic cobordism. J. Reine Angew. Math. 684, 87–112 (2013)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Hernandez, D.: Drinfeld coproduct, quantum fusion tensor category and applications. Proc. Lond. Math. Soc. 95(3), 567–608 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Khoroshkin, S.M., Tolstoy, V.N.: Yangian double. Lett. Math. Phys. 36(4), 373–402 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kontsevich, M., Soibelman, Y.: Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants. Commun. Number Theory Phys. 5(2), 231–352 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Krishna, A.: Equivariant cobordism of schemes. Doc. Math. 17, 95–134 (2012)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Leclerc, B.: Dual canonical bases, quantum shuffles and \(q\)-characters. Math. Z. 246(4), 691–732 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lenart, C., Zainoulline, K.: Towards generalized cohomology schubert calculus via formal root polynomials. Preprint arXiv:1408.5952 (2014)
  20. 20.
    Levine, M., Morel, F.: Algebraic Cobordism Theory. Springer, Berlin (2007)zbMATHGoogle Scholar
  21. 21.
    Lusztig, G.: Quivers, perverse sheaves, and quantized enveloping algebras. J. Am. Math. Soc. 4(2), 365–421 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Nakajima, H.: Quiver varieties and finite dimensional representations of quantum affine algebras. J. Am. Math. Soc. 14(1), 145–238 (2001). arXiv:hep-th/9912158 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Nakajima, H.: Quiver Varieties and Tensor Products II, Symmetries, Integrable Systems and Representations, Springer Proc. Math. Stat., vol. 40, pp. 403–428. Springer, Heidelberg (2013)Google Scholar
  24. 24.
    Negut, A.: The shuffle algebra revisited. Int. Math. Res. Not. IMRN 22, 6242–6275 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Rosso, M.: Quantum groups and quantum shuffles. Invent. Math. 133, 399–416 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Schiffmann, O., Vasserot, E.: The elliptic Hall algebra and the K-theory of the Hilbert scheme of \({\mathbb{A}}^2\). Duke Math. J. 162(2), 279–366 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Totaro, B.: The Chow ring of a classifying space. Algebraic K-theory (Seattle, WA, 1997), 249–281. Proc. Sympos. Pure Math., vol. 67. American Mathematical Society, Providence (1999)Google Scholar
  28. 28.
    Thomason, R.: Les K-groupes d’un schéma éclaté et une formule d’intersection excédentaire. Invent. Math. 112, 195–215 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Varagnolo, M.: Quiver varieties and Yangians. Lett. Math. Phys. 53(4), 273–283 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Yang, Y., Zhao, G.: The cohomological Hall algebra of a preprojective algebra. Preprint arXiv:1407.7994v5 (2015)
  31. 31.
    Yang, Y., Zhao, G.: Quiver varieties and elliptic quantum groups. Preprint arXiv:1708.01418 (2017)
  32. 32.
    Zhao, G., Zhong, C.: Geometric representations of the formal affine Hecke algebra. Adv. Math. 317, 50–90 (2017). arXiv:1406.1283 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsThe University of MelbourneParkvilleAustralia
  2. 2.Department of Mathematics and StatisticsUniversity of MassachusettsAmherstUSA

Personalised recommendations