Abstract
We introduce the notion of a relative pseudomonad, which generalizes the notion of a pseudomonad, and define the Kleisli bicategory associated to a relative pseudomonad. We then present an efficient method to define pseudomonads on the Kleisli bicategory of a relative pseudomonad. The results are applied to define several pseudomonads on the bicategory of profunctors in an homogeneous way and provide a uniform approach to the definition of bicategories that are of interest in operad theory, mathematical logic, and theoretical computer science.
References
- 1.
Altenkirch, T., Chapman, J., Uustalu, T.: Monads need not be endofunctors. Log. Methods Comput. Sci. 11(1:3), 1–40 (2015)
- 2.
Artin, M., Grothendieck, A., Verdier, J.-L. (eds.): Séminaire de Géométrie Algébrique du Bois Marie (1963–1964)–Théorie des topos et cohomologie étale des schemas, Tome 1. Lecture Notes in Mathematics, vol. 269. Springer, New York (1973)
- 3.
Baez, J., Dolan, J.: Higher-dimensional algebra and topological quantum field theory. J. Math. Phys. 36, 6073–6105 (1995)
- 4.
Baez, J., Dolan, J.: Higher-dimensional algebra III: \(n\)-categories and the algebra of opetopes. Adv. Math. 135(2), 145–206 (1998)
- 5.
Barr, M., Wells, C.: Toposes, Triples, and Theories. Springer, New York (1985)
- 6.
Beck, J.: Distributive laws. In: Eckmann, B. (ed.) Seminar on Triples and Categorical Homology Theory (ETH, Zürich, 1966/1967), pp. 119–140. Springer, New York (1969)
- 7.
Bénabou, J.: Introduction to bicategories. Reports of the Midwest Category Seminar, volume 47 of Lecture Notes in Mathematics, pp. 1–77. Springer, New York (1967)
- 8.
Bénabou, J.: Distributors at work. Notes by Thomas Streicher of a series of lectures given at TU Darmstadt (2000)
- 9.
Bird, G.J., Kelly, G.M., Power, A.J., Street, R.H.: Flexible limits for 2-categories. J. Pure Appl. Algebra 61, 1–27 (1989)
- 10.
Blackwell, R., Kelly, G.M., Power, A.J.: Two-dimensional monad theory. J. Pure Appl. Algebra 59, 1–41 (1989)
- 11.
Borceux, F.: Handbook of Categorical Algebra, vol. I. Cambridge University Press, Cambridge (1994)
- 12.
Bunge, M.: Coherent extensions and relational algebras. Trans. Am. Math. Soc. 197, 355–390 (1974)
- 13.
Cattani, G.L., Winskel, G.: Profunctors, open maps, and bisimulation. Math. Struct. Comput. Sci. 15(3), 553–614 (2005)
- 14.
Cheng, E., Hyland, M., Power, J.: Pseudo-distributive laws. Electron. Notes Theor. Comput. Sci. 83, 227–245 (2003)
- 15.
Chikhladze, D.: Lax formal theory of monads, monoidal approach to bicategorical structures and generalized operads. Theory Appl. Categ. 30(10), 332–386 (2015)
- 16.
Crutwell, G.S.H., Shulman, M.A.: A unified framework for generalized multicategories. Theory Appl. Categ. 24(21), 580–655 (2010)
- 17.
Curien, P.-L.: Operads, clones, and distributive laws. In: Proceedings of the International Conference on Operads and Universal Algebra, volume 9 of Nankai Series in Pure, Applied Mathematics and Theoretical Physics, pp. 25–50. World Scientific (2012)
- 18.
Day, B.J.: On closed categories of functors. Reports of the Midwest Category Seminar IV, volume 137 of Lecture Notes in Mathematics, pp. 1–38. Springer, New York (1970)
- 19.
Day, B.J., Street, R.H.: Abstract substitution in enriched categories. J. Pure Appl. Algebra 179(1), 49–63 (2003)
- 20.
Day, B.J., Lack, S.: Limits of small functors. J. Pure Appl. Algebra 210(3), 651–683 (2007)
- 21.
Fiore, M.: Mathematical models of computational and combinatorial structures. In: Sassone, V. (ed.) Foundations of Software Science and Computation Structures, volumes 3441 of Lecture Notes in Computer Science, pp. 25–46. Springer, New York (2005)
- 22.
Fiore, M.: Second-order and dependently-sorted abstract syntax. In: 23rd Symposium on Logic in Computer Science (Trento, 1999), pp. 57–68. IEEE Computer Society (2008)
- 23.
Fiore, M., Gambino, N., Hyland, M., Winskel, G.: The cartesian closed bicategory of generalized species of structures. J. Lond. Math. Soc. 77(2), 203–220 (1994)
- 24.
Fiore, M., Plotkin, G., Turi, D.: Abstract syntax and variable binding. In: 14th Symposium on Logic in Computer Science (Trento, 1999), pp. 193–202. IEEE Computer Society (1999)
- 25.
Gambino, N., Joyal, A.: On operads, bimodules, and analytic functors (2015). To appear in Memoirs of the American Mathematical Society (2015). arXiv:1405.7270
- 26.
Gordon, R., Power, A. J., Street, R.: Coherence for Tricategories vol. 117, p. 558. Memoirs of the American Mathematical Society Providence, RI (1995)
- 27.
Gurski, N.: Operads, tensor products, and the categorical Borel construction (2015). arXiv:1508.0405
- 28.
Hyland, M.: Some reasons for generalizing domain theory. Math. Struct. Comput. Sci. 20(2), 239–265 (2010)
- 29.
Hyland, M., Power, J.: Pseudo-commutative monads and pseudo-closed 2-categories. J. Pure Appl. Algebra 175, 141–185 (2002)
- 30.
Hyland, M., Nagayama, M., Power, J., Rosolini, G.: A category-theoretic formulation of Engeler-style models of the untyped lambda calculus. Electron. Notes Theor. Comput. Sci. 161, 43–57 (2001)
- 31.
Im, G.B., Kelly, G.M.: A universal property of the convolution monoidal structure. J. Pure Appl. Algebra 43, 75–88 (1986)
- 32.
Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102, 20–78 (1993)
- 33.
Kelly, G.M.: On Mac Lane’s conditions for coherence of natural associativities, commutativities, etc. J. Algebra 1(4), 397–402 (1964)
- 34.
Kelly, G.M.: Coherence theorems for lax algebras and for distributive laws. In: Kelly, G.M., Street, R.H. (eds.) Category Seminar (Proc. Sem., Sydney, 1972/1973), volume 420 of Lecture Notes in Mathematics, pp. 281–375. Springer, New York (1974)
- 35.
Kelly, G.M.: Elementary observations on 2-categorical limits. Bull. Aust. Math. Soc. 39(2), 301–317 (1989)
- 36.
Kelly, G.M.: On the operads of J. P. May. Repr. Theory Appl. Categ. 13, 1–13 (2005)
- 37.
Kelly, G.M., Lack, S.: On property-like structures. Theory Appl. Categ. 3(9), 213–250 (1997)
- 38.
Kock, A.: Monads whose structures are adjoint to units. J. Pure Appl. Algebra 104, 41–53 (1993)
- 39.
Lack, S.: A coherent approach to pseudo-monads. Adv. Math. 152, 179–202 (2000)
- 40.
Lack, S.: A 2-categories companion. In: Baez, J., May, J.P. (eds.) Towards Higher Categories, Lecture Notes in Mathematics, pp. 105–191. Springer, New York (2009)
- 41.
Lawvere, F.W.: Ordinal sums and equational doctrines. Seminar on Triples and Categorical Homology Theory (ETH, Zürich, 1966/1967), volume 80 of Lecture Notes in Mathematics, pp. 141–155. Springer, New York (1969)
- 42.
Lawvere, F.W.: Metric spaces, generalized logic, and closed categories. Rend. Sem. Mat. Fis. Milano, 43:135–166 (1973). Also in Reprints in Theory and Applications of Categories, 1:1–37, 2002
- 43.
Leinster, T.: Higher Operads, Higher Categories, volume 298 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2004)
- 44.
Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, New York (1998)
- 45.
Mac Lane, S., Paré, R.: Coherence for bicategories and indexed categories. J. Pure Appl. Algebra 37, 59–80 (1985)
- 46.
Mac Lane, S., Moerdijk, I.: Sheaves in Geometry and Logic. Springer, New York (1992)
- 47.
Manes, E.: Algebraic Theories. Springer, New York (1976)
- 48.
Marmolejo, F.: Doctrines whose structure forms a fully faithful adjoint string. Theory Appl. Categ. 3(2), 23–44 (1997)
- 49.
Marmolejo, F.: Distributive laws for pseudo-monads. Theory Appl. Categ. 5(5), 91–147 (1999)
- 50.
Marmolejo, F., Wood, R.J.: Coherence for pseudodistributive laws revisited. Theory Appl. Categ. 20(5), 74–84 (2008)
- 51.
Marmolejo, F., Wood, R.J.: Monads as extension systems—no iteration is necessary. Theory Appl. Categ. 24(4), 84–113 (2010)
- 52.
Marmolejo, F., Wood, R.J.: Kan extensions and lax idempotent pseudomonads. Theory Appl. Categ. 26(1), 1–29 (2012)
- 53.
Marmolejo, F., Wood, R.J.: No-iteration pseudo-monads. Theory Appl. Categ. 28(14), 371–402 (2013)
- 54.
Power, A.J.: A general coherence result. J. Pure Appl. Algebra 57(2), 165–173 (1989)
- 55.
Power, A.J., Tanaka, M.: Binding signatures for generic contexts. In: Urzyczyn, P. (ed.) Typed Lambda Calculi and Applications: 7th International Conference, volumes of Lecture Notes in Computer Science, pp. 308–323. Springer, New York (2005)
- 56.
Shulman, M.: Not every pseudoalgebra is equivalent to a strict one. Adv. Math. 229(3), 2024–2041 (2012)
- 57.
Smirnov, V.A.: On the cochain complex of topological spaces. Math. USSR. Sb. 115 (157)(1 (5)):146–158 (1981)
- 58.
Street, R.: The formal theory of monads. J. Pure Appl. Algebra 2(2), 149–168 (1972)
- 59.
Street, R.: Fibrations and Yoneda’s lemma in a 2-category. In: Kelly, G.M., Street, R.H. (eds.) Category Seminar (Proc. Sem., Sydney, 1972/1973), volume 420 of Lecture Notes in Mathematics, pp. 104–133. Springer, New York (1974)
- 60.
Street, R.: Fibrations in bicategories. Cah. Topol. Géom. Differ. 21(2), 111–160 (1980)
- 61.
Tanaka, M.: Abstract syntax and variable binding for linear binders. In: Nielsen, M., Rovan, B. (eds.) Mathematical Foundations of Computer Science 2000: 25th International Symposium, volume 1893 of Lecture Notes in Computer Science, pp. 670–679. Springer, New York (2000)
- 62.
Tanaka, M.: Pseudo-distributive laws and a unified framework for variable binding. PhD thesis, Laboratory for the Foundations of Computer Science, School of Informatics, University of Edinburgh, 2004. Available as LFCS Technical Report ECS-LFCS-04-438
- 63.
Ulmer, F.: Properties of dense and relative adjoint functors. J. Algebra 8, 77–95 (1968)
- 64.
Walters, R.F.C.: A categorical approach to universal algebra. PhD thesis, Australian National University (1970)
- 65.
Zöberlein, V.: Doktrinen auf 2-Kategorien. PhD thesis, University of Düsseldorf (1974)
Author information
Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Fiore, M., Gambino, N., Hyland, M. et al. Relative pseudomonads, Kleisli bicategories, and substitution monoidal structures. Sel. Math. New Ser. 24, 2791–2830 (2018). https://doi.org/10.1007/s00029-017-0361-3
Published:
Issue Date:
Mathematics Subject Classification
- 18D05
- 18C20
- 18D50