Abstract
In this note, we show that the free generators of the Mishchenko–Fomenko subalgebra of a complex reductive Lie algebra, constructed by the argument shift method at a regular element, form a regular sequence. This result was proven by Serge Ovsienko in the type A at a regular and semisimple element. Our approach is very different, and is strongly based on geometric properties of the nilpotent bicone.
This is a preview of subscription content, access via your institution.
References
Arakawa, T., Premet, A.: Quantizing Mishchenko–Fomenko subalgebras for centralizers via affine W-algebras. arXiv:1611.00852 [math.RT], to appear in the special issue of Proceedings of Moscow Math. Society dedicated to Vinberg’s 80th birthday
Borho, W., Kraft, H.: Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen. Comment. Math. Helv. 54, 61–104 (1979)
Charbonnel, J.-Y., Moreau, A.: Nilpotent bicone and characteristic submodule in a reductive Lie algebra. Transform. Groups 14(2), 319–360 (2009)
Charbonnel, J.-Y., Moreau, A.: The index of centralizers of elements of reductive Lie algebras. Doc. Math. 15, 387–421 (2010)
Charbonnel, J.-Y., Moreau, A.: The symmetric invariants of centralizers and Slodowy grading. Math. Z. 282(1–2), 273–339 (2016)
Charbonnel, J.-Y., Moreau, A.: The symmetric invariants of centralizers and Slodowy grading II. Algebr. Represent. Theor. (2017). doi:10.1007/s10468-017-9690-3
Dixmier, J.: Algèbres Enveloppantes. Gauthier-Villars, Paris (1974)
Feigin, B., Frenkel, E., Toledano Laredo, V.: Gaudin models with irregular singularities. Adv. Math. 223, 873–948 (2010)
Futorny, V., Ovsienko, S.: Kostant’s theorem for special filtered algebras. Bull. Lond. Math. Soc. 37, 187–199 (2005)
Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics 52. Springer, Berlin (1977)
Kostant, B.: Lie group representations on polynomial rings. Am. J. Math. 85, 327–404 (1963)
Matsumura, H.: Commutative Ring Theory, Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1986)
Mishchenko, A.T., Fomenko, A.S.: Euler equations on Lie groups. Math. USSR-Izv. 12, 371–389 (1978)
Mutis Cantero, W.F.: Variedades de Mishchenko–Fomenko em \({\mathfrak{gl}}_n\). Ph.D. thesis (2016)
Ovsienko, S.: Strongly nilpotent matrices and Gelfand–Zetlin modules. Linear Algebra Appl. 365, 349–367 (2003)
Panyushev, D.I., Yakimova, O.: The argument shift method and maximal commutative subalgebras of Poisson algebra. Math. Res. Lett. 15(2), 239–249 (2008)
Panyushev, D.I., Premet, A., Yakimova, O.: On symmetric invariants of centralizers in reductive Lie algebras. J. Algebra 313, 343–391 (2007)
Rybnikov, L.: The shift of invariants method and the Gaudin model. Funct. Anal. Appl. 40, 188–199 (2006)
Tarasov, A.A.: The maximality of certain commutative subalgebras in Poisson algebras of a semisimple Lie algebra. Russ. Math. Surv. 57(5), 1013–1014 (2002)
Vinberg, E.: Some commutative subalgebras of a universal enveloping algebra. Math. USSR-Izv. 36, 1–22 (1991)
Yakimova, O.: A counterexample to Premet’s and Joseph’s conjecture. Bull. Lond. Math. Soc. 39, 749–754 (2007)
Yakimova, O.: Surprising properties of centralisers in classical Lie algebras. Ann. Inst. Fourier (Grenoble) 59, 903–935 (2009)
Yakimova, O.: Symmetric invariants of \({\mathbb{Z}}_2\)-contractions and other semi-direct products. IMRN 2017(6), 1674–1716 (2017)
Acknowledgements
The author is very grateful to Tomoyuki Arakawa and Vyacheslav Futorny for submitting this problem to her attention. She thanks Jean-Yves Charbonnel very much for his useful remarks about this note. Finally, she wishes to thank the anonymous referee for his careful reading and judicious comments.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Moreau, A. A remark on Mishchenko–Fomenko algebras and regular sequences. Sel. Math. New Ser. 24, 2651–2657 (2018). https://doi.org/10.1007/s00029-017-0357-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00029-017-0357-z
Keywords
- Mishchenko–Fomenko algebra
- Regular sequence
- Nilpotent bicone
Mathematics Subject Classification
- 17B20
- 14B05