Selecta Mathematica

, Volume 24, Issue 3, pp 2651–2657 | Cite as

A remark on Mishchenko–Fomenko algebras and regular sequences

  • Anne Moreau


In this note, we show that the free generators of the Mishchenko–Fomenko subalgebra of a complex reductive Lie algebra, constructed by the argument shift method at a regular element, form a regular sequence. This result was proven by Serge Ovsienko in the type A at a regular and semisimple element. Our approach is very different, and is strongly based on geometric properties of the nilpotent bicone.


Mishchenko–Fomenko algebra Regular sequence Nilpotent bicone 

Mathematics Subject Classification

17B20 14B05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author is very grateful to Tomoyuki Arakawa and Vyacheslav Futorny for submitting this problem to her attention. She thanks Jean-Yves Charbonnel very much for his useful remarks about this note. Finally, she wishes to thank the anonymous referee for his careful reading and judicious comments.


  1. 1.
    Arakawa, T., Premet, A.: Quantizing Mishchenko–Fomenko subalgebras for centralizers via affine W-algebras. arXiv:1611.00852 [math.RT], to appear in the special issue of Proceedings of Moscow Math. Society dedicated to Vinberg’s 80th birthday
  2. 2.
    Borho, W., Kraft, H.: Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen. Comment. Math. Helv. 54, 61–104 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Charbonnel, J.-Y., Moreau, A.: Nilpotent bicone and characteristic submodule in a reductive Lie algebra. Transform. Groups 14(2), 319–360 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Charbonnel, J.-Y., Moreau, A.: The index of centralizers of elements of reductive Lie algebras. Doc. Math. 15, 387–421 (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Charbonnel, J.-Y., Moreau, A.: The symmetric invariants of centralizers and Slodowy grading. Math. Z. 282(1–2), 273–339 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Charbonnel, J.-Y., Moreau, A.: The symmetric invariants of centralizers and Slodowy grading II. Algebr. Represent. Theor. (2017). doi: 10.1007/s10468-017-9690-3
  7. 7.
    Dixmier, J.: Algèbres Enveloppantes. Gauthier-Villars, Paris (1974)zbMATHGoogle Scholar
  8. 8.
    Feigin, B., Frenkel, E., Toledano Laredo, V.: Gaudin models with irregular singularities. Adv. Math. 223, 873–948 (2010)Google Scholar
  9. 9.
    Futorny, V., Ovsienko, S.: Kostant’s theorem for special filtered algebras. Bull. Lond. Math. Soc. 37, 187–199 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics 52. Springer, Berlin (1977)Google Scholar
  11. 11.
    Kostant, B.: Lie group representations on polynomial rings. Am. J. Math. 85, 327–404 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Matsumura, H.: Commutative Ring Theory, Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1986)Google Scholar
  13. 13.
    Mishchenko, A.T., Fomenko, A.S.: Euler equations on Lie groups. Math. USSR-Izv. 12, 371–389 (1978)CrossRefzbMATHGoogle Scholar
  14. 14.
    Mutis Cantero, W.F.: Variedades de Mishchenko–Fomenko em \({\mathfrak{gl}}_n\). Ph.D. thesis (2016)Google Scholar
  15. 15.
    Ovsienko, S.: Strongly nilpotent matrices and Gelfand–Zetlin modules. Linear Algebra Appl. 365, 349–367 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Panyushev, D.I., Yakimova, O.: The argument shift method and maximal commutative subalgebras of Poisson algebra. Math. Res. Lett. 15(2), 239–249 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Panyushev, D.I., Premet, A., Yakimova, O.: On symmetric invariants of centralizers in reductive Lie algebras. J. Algebra 313, 343–391 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Rybnikov, L.: The shift of invariants method and the Gaudin model. Funct. Anal. Appl. 40, 188–199 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Tarasov, A.A.: The maximality of certain commutative subalgebras in Poisson algebras of a semisimple Lie algebra. Russ. Math. Surv. 57(5), 1013–1014 (2002)CrossRefzbMATHGoogle Scholar
  20. 20.
    Vinberg, E.: Some commutative subalgebras of a universal enveloping algebra. Math. USSR-Izv. 36, 1–22 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Yakimova, O.: A counterexample to Premet’s and Joseph’s conjecture. Bull. Lond. Math. Soc. 39, 749–754 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Yakimova, O.: Surprising properties of centralisers in classical Lie algebras. Ann. Inst. Fourier (Grenoble) 59, 903–935 (2009)Google Scholar
  23. 23.
    Yakimova, O.: Symmetric invariants of \({\mathbb{Z}}_2\)-contractions and other semi-direct products. IMRN 2017(6), 1674–1716 (2017)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratoire Paul Painlevé, CNRS U.M.R. 8524Villeneuve d’Ascq CedexFrance

Personalised recommendations