Selecta Mathematica

, Volume 23, Issue 4, pp 2331–2367 | Cite as

Abelian duality and propagation of resonance

  • Graham Denham
  • Alexander I. Suciu
  • Sergey Yuzvinsky
Article
  • 67 Downloads

Abstract

We explore the relationship between a certain “abelian duality” property of spaces and the propagation properties of their cohomology jump loci. To that end, we develop the analogy between abelian duality spaces and those spaces which possess what we call the “EPY property”. The same underlying homological algebra allows us to deduce the propagation of jump loci: in the former case, characteristic varieties propagate, and in the latter, the resonance varieties. We apply the general theory to arrangements of linear and elliptic hyperplanes, as well as toric complexes, right-angled Artin groups, and Bestvina–Brady groups. Our approach brings to the fore the relevance of the Cohen–Macaulay condition in this combinatorial context.

Keywords

Duality space Abelian duality space Characteristic variety Resonance variety Propagation EPY property Hyperplane arrangement Toric complex Right-angled Artin group Bestvina–Brady group Cohen–Macaulay property 

Mathematics Subject Classification

Primary 55N25 Secondary 13C14 20F36 20J05 32S22 55U30 57M07 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aramova, A., Avramov, L.L., Herzog, J.: Resolutions of monomial ideals and cohomology over exterior algebras. Trans. Am. Math. Soc. 352(2), 579–594 (2000)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ayzenberg, A.: Composition of simplicial complexes, polytopes and multigraded Betti numbers. Trans. Mosc. Math. Soc. 74(2), 175–202 (2013)MathSciNetMATHGoogle Scholar
  3. 3.
    Bahri, A., Bendersky, M., Cohen, F.R., Gitler, S.: The polyhedral product functor: a method of decomposition for moment-angle complexes, arrangements and related spaces. Adv. Math. 225(3), 1634–1668 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bahri, A., Bendersky, M., Cohen, F.R., Gitler, S.: Operations on polyhedral products and a new topological construction of infinite families of toric manifolds. Homol. Homotopy Appl. 17(2), 137–160 (2015)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bestvina, M., Brady, N.: Morse theory and finiteness properties of groups. Invent. Math. 129(3), 445–470 (1997)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bibby, C.: Cohomology of abelian arrangements. Proc. Am. Math. Soc. 144(7), 3093–3104 (2016)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bieri, R., Eckmann, B.: Groups with homological duality generalizing Poincaré duality. Invent. Math. 20, 103–124 (1973)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Björner, A.: The unimodality conjecture for convex polytopes. Bull. Am. Math. Soc. (N.S.) 4(2), 187–188 (1981)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Boyarchenko, M., Drinfeld, V.: A duality formalism in the spirit of Grothendieck and Verdier. Quantum Topol. 4(4), 447–489 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Brady, N., Meier, J.: Connectivity at infinity for right angled Artin groups. Trans. Am. Math. Soc. 353(1), 117–132 (2001)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Brown, K.S.: Cohomology of Groups, Graduate Texts in Mathematics, vol. 87. Springer, New York (1982)CrossRefGoogle Scholar
  12. 12.
    Budur, N.: Complements and higher resonance varieties of hyperplane arrangements. Math. Res. Lett. 18(5), 859–873 (2011)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Budur, N.: Erratum: complements and higher resonance varieties of hyperplane arrangements. Math. Res. Lett. 21(1), 83–84 (2014)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Budur, N., Wang, B.: Cohomology jump loci of differential graded Lie algebras. Compos. Math. 151(8), 1499–1528 (2015)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Davis, M.W., Leary, I., Januszkiewicz, T., Okun, B.: Cohomology of hyperplane complements with group ring coefficients. Int. Math. Res. Not. IMRN. 2011(9), 2110–2116 (2011)MathSciNetMATHGoogle Scholar
  16. 16.
    Davis, M.W., Okun, B.: Cohomology computations for Artin groups, Bestvina–Brady groups, and graph products. Groups Geom. Dyn. 6(3), 485–531 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Denham, G.: Higher resonance varieties of matroids. In: Configurations Spaces, 41–66, Springer INdAM series, vol. 14. Springer, Cham (2016)Google Scholar
  18. 18.
    Denham, G., Suciu, A.I.: Moment-angle complexes, monomial ideals, and Massey products. Pure Appl. Math. Q. 3(1), 25–60 (2007)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Denham, G., Suciu, A.I.: Multinets, parallel connections, and Milnor fibrations of arrangements. Proc. Lond. Math. Soc. 108(6), 1435–1470 (2014)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Denham, G., Suciu, A.I.: Local Systems on Arrangements of Smooth, Complex Algebraic Hypersurfaces. arXiv:1706.00956
  21. 21.
    Denham, G., Suciu, A.I., Yuzvinsky, S.: Combinatorial covers and vanishing cohomology. Sel. Math. 22(2), 561–594 (2016)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Dimca, A.: Sheaves in Topology. Universitext. Springer, Berlin (2004)CrossRefMATHGoogle Scholar
  23. 23.
    Dimca, A.: Tate properties, polynomial-count varieties, and monodromy of hyperplane arrangements. Nagoya Math. J. 206, 75–97 (2012)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Dimca, A., Papadima, S.: Hypersurface complements, Milnor fibers and higher homotopy groups of arrangements. Ann. Math. 158(2), 473–507 (2003)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Dimca, A., Suciu, A.I.: Which 3-manifold groups are Kähler groups? J. Eur. Math. Soc. 11(3), 521–528 (2009)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Eagon, J., Reiner, V.: Resolutions of Stanley–Reisner rings and Alexander duality. J. Pure Appl. Algebra 130(3), 265–275 (1998)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Eisenbud, D.: Commutative Algebra with a View Towards Algebraic Geometry, Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)Google Scholar
  28. 28.
    Eisenbud, D.: The Geometry of Syzygies, Graduate Texts in Mathematics, vol. 229. Springer, New York (2005)Google Scholar
  29. 29.
    Eisenbud, D., Huneke, C., Vasconcelos, W.: Direct methods for primary decomposition. Invent. Math. 110(2), 207–235 (1992)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Eisenbud, D., Popescu, S., Yuzvinsky, S.: Hyperplane arrangement cohomology and monomials in the exterior algebra. Trans. Am. Math. Soc. 355(11), 4365–4383 (2003)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Farrell, F.T.: Poincaré duality and groups of type (FP). Comment. Math. Helv. 50, 187–195 (1975)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Fenn, R., Sjerve, D.: Duality and cohomology for one-relator groups. Pac. J. Math. 103(2), 365–375 (1982)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Hartshorne, R.: Residues and Duality, Lecture Notes of a Seminar on the Work of A. Grothendieck, Given at Harvard 1963/64. With an Appendix by P. Deligne. Lecture Notes in Mathematics, No. 20. Springer, Berlin (1966)Google Scholar
  34. 34.
    Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics, no. 52. Springer, New York (1977)Google Scholar
  35. 35.
    Hausmann, J.-C.: Every finite complex has the homology of a duality group. Math. Ann. 275(2), 327–336 (1986)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Herzog, J., Kühl, M.: On the Betti numbers of finite pure and linear resolutions. Comm. Algebra 12(13–14), 1627–1646 (1984)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Huh, J.: \(h\)-vectors of matroids and logarithmic concavity. Adv. Math. 270, 49–59 (2015)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Iversen, B.: Cohomology of Sheaves. Universitext. Springer, Berlin (1986)CrossRefMATHGoogle Scholar
  39. 39.
    Jensen, C., Meier, J.: The cohomology of right-angled Artin groups with group ring coefficients. Bull. Lond. Math. Soc. 37(5), 711–718 (2005)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Kashiwara, M., Schapira, P.: Sheaves on Manifolds, Grundlehren Math. Wiss., vol. 292. Springer, Berlin (1990)Google Scholar
  41. 41.
    Kohno, T., Pajitnov, A.: Novikov homology, jump loci and Massey products. Cent. Eur. J. Math. 12(9), 1285–1304 (2014)MathSciNetMATHGoogle Scholar
  42. 42.
    Levin, A., Varchenko, A.: Cohomology of the complement to an elliptic arrangement. In: Configuration Spaces: Geometry, Combinatorics and Topology, 373–388, CRM Series, vol. 14. Ed. Norm, Pisa (2012)Google Scholar
  43. 43.
    Papadima, S., Suciu, A.I.: Algebraic invariants for Bestvina–Brady groups. J. Lond. Math. Soc. 76(2), 273–292 (2007)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Papadima, S., Suciu, A.I.: Toric complexes and Artin kernels. Adv. Math. 220(2), 441–477 (2009)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Papadima, S., Suciu, A.I.: The spectral sequence of an equivariant chain complex and homology with local coefficients. Trans. Am. Math. Soc. 362(5), 2685–2721 (2010)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Papadima, S., Suciu, A.I.: Jump loci in the equivariant spectral sequence. Math. Res. Lett. 21(4), 863–883 (2014)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Pletsch, A.: Profinite duality groups. I. J. Pure Appl. Algebra 16(1), 55–74 (1980)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Randell, R.: Morse theory, Milnor fibers and minimality of hyperplane arrangements. Proc. Am. Math. Soc. 130(9), 2737–2743 (2002)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Serre, J.-P.: Cohomologie galoisienne, Cours au Collège de France, 1962–1963. Seconde édition. With a Contribution by Jean-Louis Verdier. Lecture Notes in Mathematics, vol. 5. Springer, Berlin (1962/1963)Google Scholar
  50. 50.
    Suciu, A.I.: Characteristic varieties and Betti numbers of free abelian covers. Int. Math. Res. Not. IMRN 2014(4), 1063–1124 (2014)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Suciu, A.I.: Hyperplane arrangements and Milnor fibrations. Ann. Fac. Sci. Toulouse Math. (6) 23(2), 417–481 (2014)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Sweedler, M.E.: Hopf Algebras, Mathematics Lecture Note Series. W. A. Benjamin Inc, New York (1969)MATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Western OntarioLondonCanada
  2. 2.Department of MathematicsNortheastern UniversityBostonUSA
  3. 3.Department of MathematicsUniversity of OregonEugeneUSA

Personalised recommendations