Advertisement

Selecta Mathematica

, Volume 24, Issue 2, pp 1549–1591 | Cite as

Affine Macdonald conjectures and special values of Felder–Varchenko functions

  • Eric M. Rains
  • Yi Sun
  • Alexander Varchenko
Article
  • 50 Downloads

Abstract

We refine the statement of the denominator and evaluation conjectures for affine Macdonald polynomials proposed by Etingof–Kirillov Jr. (Duke Math J 78(2):229–256, 1995) and prove the first non-trivial cases of these conjectures. Our results provide a q-deformation of the computation of genus 1 conformal blocks via elliptic Selberg integrals by Felder–Stevens–Varchenko (Math Res Lett 10(5–6):671–684, 2003). They allow us to give precise formulations for the affine Macdonald conjectures in the general case which are consistent with computer computations. Our method applies recent work of the second named author to relate these conjectures in the case of \(U_q(\widehat{\mathfrak {sl}}_2)\) to evaluations of certain theta hypergeometric integrals defined by Felder–Varchenko (Int Math Res Not 21:1037–1055, 2004). We then evaluate the resulting integrals, which may be of independent interest, by well-chosen applications of the elliptic beta integral introduced by Spiridonov (Uspekhi Mat Nauk 56(1(337)):181–182, 2001).

Mathematics Subject Classification

Primary 17B37 Secondary 17B67 33C75 33D80 81R12 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3-4), 235–265 (1997). Computational Algebra and Number Theory, London (1993)Google Scholar
  2. 2.
    Braverman, A., Finkelberg, M., Kazhdan, D.: Affine Gindikin–Karpelevich formula via Uhlenbeck spaces. In: Contributions in Analytic and Algebraic Number Theory, Springer Proceedings in Mathematics, vol. 9, pp. 17–29. Springer, New York (2012)Google Scholar
  3. 3.
    Braverman, A., Finkelberg, M., Kazhdan, D.: Affine Gindikin–Karpelevich formula via Uhlenbeck spaces. In: Contributions in Analytic and Algebraic Number Theory, Springer Proceedings in Mathematics, vol. 9, pp. 17–29. Springer, New York (2012)Google Scholar
  4. 4.
    Braverman, A., Kazhdan, D.: Representations of affine KAC-Moody groups over local and global fields: a survey of some recent results. In: European Congress of Mathematics, pp. 91–117. European Mathematical Society, Zürich (2013)Google Scholar
  5. 5.
    Braverman, A., Kazhdan, D., Patnaik, M.: Iwahori-Hecke algebras for \(p\)-adic loop groups. Invent. Math. 204(2), 347–442 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Etingof, P., Kirillov Jr., A.: Macdonald’s polynomials and representations of quantum groups. Math. Res. Lett. 1(3), 279–296 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Etingof, P., Kirillov Jr., A.: Representations of affine Lie algebras, parabolic differential equations, and Lamé functions. Duke Math. J. 74(3), 585–614 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Etingof, P., Kirillov Jr., A.: On the affine analogue of Jack and Macdonald polynomials. Duke Math. J. 78(2), 229–256 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Etingof, P., Kirillov Jr., A.: Representation-theoretic proof of the inner product and symmetry identities for Macdonald’s polynomials. Compos. Math. 102(2), 179–202 (1996)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Etingof, P., Schiffmann, O., Varchenko, A.: Traces of intertwiners for quantum groups and difference equations, II. Lett. Math. Phys. 62(2), 143–158 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Frenkel, I., Reshetikhin, N.: Quantum affine algebras and holonomic difference equations. Comm. Math. Phys. 146(1), 1–60 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Felder, G., Stevens, L., Varchenko, A.: Elliptic Selberg integrals and conformal blocks. Math. Res. Lett. 10(5–6), 671–684 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Felder, G., Tarasov, V., Varchenko, A.: Solutions of the elliptic \(q\)-KZB equations and Bethe ansatz. I. In: Topics in Singularity Theory, American Mathematical Society. Translate Series 2, vol. 180, pp. 45–75. American Mathematical Society, Providence, RI (1997)Google Scholar
  14. 14.
    Felder, G., Tarasov, V., Varchenko, A.: Monodromy of solutions of the elliptic quantum Knizhnik–Zamolodchikov-Bernard difference equations. Internat. J. Math. 10(8), 943–975 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Felder, G., Varchenko, A.: Algebraic Bethe ansatz for the elliptic quantum group \(E_{\tau,\eta }({\rm sl}_2)\). Nuclear Phys. B 480(1–2), 485–503 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Felder, G., Varchenko, A.: Algebraic integrability of the two-particle Ruijsenaars operator. Funct. Anal. Appl. 32(2), 8–25 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Felder, G., Varchenko, A.: The elliptic gamma function and \({\rm SL}(3,\mathbb{Z})\ltimes {\mathbb{Z}^3}\). Adv. Math. 156(1), 44–76 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Felder, G., Varchenko, A.: The \(q\)-deformed Knizhnik–Zamolodchikov-Bernard heat equation. Comm. Math. Phys. 221(3), 549–571 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Felder, G., Varchenko, A.: \(q\)-deformed KZB heat equation: completeness, modular properties and \({\rm SL}(3,\mathbb{Z})\). Adv. Math. 171(2), 228–275 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Felder, G., Varchenko, A.: Hypergeometric theta functions and elliptic Macdonald polynomials. Int. Math. Res. Not. 21, 1037–1055 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Felder, G., Varchenko, A.: Multiplication formulae for the elliptic gamma function. In: Noncommutative Geometry and Representation Theory in Mathematical Physics, Contemporay Mathematics, vol. 391, pp. 69–73. American Mathematical Society, Providence, RI (2005)Google Scholar
  22. 22.
    Konno, H.: Free-field representation of the quantum affine algebra \(U_q(\widehat{\mathfrak{sl}}_2)\) and form factors in the higher-spin \(XXZ\) model. Nuclear Phys. B 432(3), 457–486 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kato, A., Quano, Y., Shiraishi, J.: Free boson representation of \(q\)-vertex operators and their correlation functions. Commun. Math. Phys. 157(1), 119–137 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Macdonald, I.: A formal identity for affine root systems. In: Lie groups and symmetric spaces, American Mathematical Society. Translate Series 2, vol. 210, pp. 195–211. American Mathematical Society, Providence, RI (2003)Google Scholar
  25. 25.
    Matsuo, A.: A \(q\)-deformation of Wakimoto modules, primary fields and screening operators. Commun. Math. Phys. 160(1), 33–48 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Spiridonov, V.P.: On the elliptic beta function. Uspekhi Mat. Nauk 56(1(337)), 181–182 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Sun, Y.: Traces of intertwiners for quantum affine \({\mathfrak{sl}}_2\) and Felder-Varchenko functions. Commun. Math. Phys., 347, 573–653, 2016. arXiv:1508.03918
  28. 28.
    Sun, Y.: Traces of intertwiners for quantum affine algebras and difference equations (after Etingof-Schiffmann-Varchenko). Transform. Groups (2017). arXiv:1609.09038 (to appear)

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Department of MathematicsCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of MathematicsColumbia UniversityNew YorkUSA
  3. 3.Department of MathematicsUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations