Skip to main content
Log in

Dual Hodge decompositions and derived Poisson brackets

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We study general properties of Hodge-type decompositions of cyclic and Hochschild homology of universal enveloping algebras of (DG) Lie algebras. Our construction generalizes the operadic construction of cyclic homology of Lie algebras due to Getzler and Kapranov. We give a topological interpretation of such Lie Hodge decompositions in terms of \(S^1\)-equivariant homology of the free loop space of a simply connected topological space. We prove that the canonical derived Poisson structure on a universal enveloping algebra arising from a cyclic pairing on the Koszul dual coalgebra preserves the Hodge filtration on cyclic homology. As an application, we show that the Chas–Sullivan Lie algebra of any simply connected closed manifold carries a natural Hodge filtration. We conjecture that the Chas–Sullivan Lie algebra is actually graded, i.e. the string topology bracket preserves the Hodge decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berest, Y., Chen, X., Eshmatov, F., Ramadoss, A.: Noncommutative Poisson structures, derived representation schemes and Calabi–Yau algebras. Contemp. Math. 583, 219–246 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berest, Y., Felder, G., Patotski, A., Ramadoss, A.C., Willwacher, T.: Representation homology, Lie algebra cohomology and the derived Harish–Chandra homomorphism. arXiv:1410.0043. J. Eur. Math. Soc (to appear)

  3. Berest, Y., Felder, G., Patotski, A., Ramadoss, A.C., Willwacher, T.: Chern–Simons forms and higher character maps of Lie representations. Int. Math. Res. Not. 2017(1), 158–212 (2017)

  4. Berest, Y., Khachatryan, G., Ramadoss, A.: Derived representation schemes and cyclic homology. Adv. Math. 245, 625–689 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berest, Y., Ramadoss, A.: Stable representation homology and Koszul duality. J. Reine Angew. Math. 715, 143–187 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Bocklandt, R., Le Bruyn, L.: Necklace Lie algebras and noncommutative symplectic geometry. Math. Z. 240(1), 141–167 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burghelea, D., Vigué-Poirrier, M.: Cyclic homology of commutative algebras I. Lecture Notes in Math, vol. 1318. Springer, Berlin, pp. 51–72 (1988)

  8. Burghelea, D., Fiedorowicz, Z., Gajda, W.: Adams operations in Hochschild and cyclic homology of de Rham algebra and free loop spaces. K-Theory 4, 269–287 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chas, M., Sullivan, D.: Closed string operators in topology leading to Lie bialgebras and higher string algebra in The Legacy of Niels Henrik Abel, pp. 771–784. Springer, Berlin (2004)

    MATH  Google Scholar 

  10. Chen, X., Eshmatov, F., Gan, W.-L.: Quantization of the Lie bialgebra of string topology. Comm. Math. Phys. 301, 37–53 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, X., Eshmatov, A., Eshmatov, F., Yang, S.: The derived non-commutative Poisson bracket on Koszul Calabi–Yau algebras. arXiv:1504.02885. J. Noncommut. Geom. (to appear)

  12. Crawley-Boevey, W.: Poisson structures on moduli spaces of representations. J. Algebra 325, 205–215 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Drinfeld, V.G.: On quasitriangular quasi-Hopf algebras and on a group that is closely connected with \({{\rm Gal}}(\overline{\mathbb{Q}}/{\mathbb{Q}})\). Leningrad Math. J. 2, 829–860 (1991)

    MathSciNet  Google Scholar 

  14. Dwyer, W., Spalinski, J.: Homotopy theories and model categories. In: Handbook of Algebraic Topology, North-Holland, Amsterdam, pp. 73–126 (1995)

  15. Dwyer, W., Hirschhorn, P., Kan, D., Smith, J.: Homotopy Limit Functors on Model Categories and Homotopical Categories, Mathematical Surveys and Monographs 113. AMS, Providence, RI (2004)

  16. Felix, Y., Halperin, S., Thomas, J.-C.: Rational Homotopy Theory, Graduate Texts in Mathematics 205. Springer-Verlag, New York (2001)

    Book  Google Scholar 

  17. Felix, Y., Thomas, J.-C.: Rational BV-algebra in string topology. Bull. Soc. Math. France 136, 311–327 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Feigin, B., Tsygan, B.: Additive K-Theory and crystalline cohomology. Funct. Anal. Appl. 19(2), 124–132 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gerstenhaber, M., Schack, S.D.: A Hodge-type decomposition for commutative algebra cohomology. J. Pure Appl. Algebra 48, 229–247 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Getzler, E., Kapranov, M.: Cyclic operads and cyclic homology, Geometry, topology and physics, 167–201, Conf. Proc. Lecture Notes Geom. Topology, IV, Intl. Press, Cambridge (1995)

  21. Ginzburg, V.: Noncommutative symplectic geometry, quiver varieties and operads. Math. Res. Lett. 8, 377–400 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Goodwillie, T.: Cyclic homology, derivations, and the free loopspace. Topology 24, 187–215 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jones, J.D.S.: Cyclic homology and equivariant homology. Invent. Math. 87, 403–423 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jones, J.D.S., McCleary, J.: Hochschild homology, cyclic homology, and the cobar construction, London Math. Soc. Lecture Note Ser., 175, Cambridge Univ. Press, Cambridge, pp. 53–65 (1992)

  25. Kassel, C.: L’homologie cyclique des algèbres enveloppantes. Invent. Math. 91, 221–251 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kontsevich, M.: Formal noncommutative symplectic geometry, The Gelfand Mathematical Seminars 1990–1992, Birkhäuser Boston, MA, pp. 183–182 (1993)

  27. Lambrechts, P., Stanley, D.: Poincaré duality and commutative differential graded algebras. Ann. Sci. École Norm. Sup. (4) 41(4), 497–511 (2008)

    Article  MATH  Google Scholar 

  28. Loday, J.-L.: Cyclic Homology. Grundl. Math. Wiss. 301, 2nd Edition, Springer-Verlag, Berlin, (1998)

  29. Loday, J.-L.: Opérations sur l’homologie cyclique des algèbres commutatives. Invent. Math. 96(1), 205–230 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. Loday, J.-L.: Série de Hausdorff, idempotents Eulériens et algèbres de Hopf. Expo. Math. 12, 165–178 (1994)

    MATH  Google Scholar 

  31. Majewski, M.: A proof of the Baues–Lemaire conjecture in rational homotopy theory. Rend. Circ. Mat. Palermo Suppl. 30, 113–123 (1993)

    MathSciNet  MATH  Google Scholar 

  32. Quillen, D.: Homotopical Algebra. Lecture Notes in Math, vol. 43. Springer-Verlag, Berlin (1967)

  33. Quillen, D.: Rational homotopy theory. Ann. Math. 90, 205–295 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  34. Quillen, D.: Algebra cochains and cyclic homology. Inst. Hautes Etudes Sci. Publ. Math. 68, 139–174 (1989)

    Article  MATH  Google Scholar 

  35. Van den Bergh, M.: Double Poisson algebras. Trans. AMS 360, 5711–5769 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Vigué-Poirrier, M.: Décompositions de l’homologie cyclique des algèbres différentielles graduées commutatives. K-theory 4, 399–410 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, Y.: Cyclic pairings and noncommutative Poisson structures. Thesis in preparation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Berest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berest, Y., Ramadoss, A.C. & Zhang, Y. Dual Hodge decompositions and derived Poisson brackets. Sel. Math. New Ser. 23, 2029–2070 (2017). https://doi.org/10.1007/s00029-017-0309-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-017-0309-7

Mathematics Subject Classification

Navigation