Abstract
We initiate a theory of highest weight representations for twisted Yangians of types B, C, D and we classify the finite-dimensional irreducible representations of twisted Yangians associated to symmetric pairs of types CI, DIII and BCD0.
Similar content being viewed by others
References
Arnaudon, D., Avan, J., Crampé, N., Frappat, L., Ragoucy, E.: \(R\)-matrix presentation for super-Yangians \(Y({\rm osp(m|2n}))\). J. Math. Phys. 44(1), 302–308 (2003). arXiv:math/0111325
Arnaudon, D., Molev, A., Ragoucy, E.: On the \(R\)-matrix realization of Yangians and their representations. Ann. Henri Poincaré 7(7–8), 1269–1325 (2006). arXiv:math/0511481
Bernard, D.: Hidden Yangians in 2 D massive current algebras. Commun. Math. Phys. 137(1), 191–208 (1991)
Bernard, D.: An introduction to Yangian symmetries. Yang–Baxter equations in Paris (1992). Int. J. Mod. Phys. B 7(20–21), 3517–3530 (1993). arXiv:hep-th/9211133
Cherednik, I.: Factorizing particles on a half line, and root systems. Teoret. Mat. Fiz. 61(1), 35–44 (1984)
Chekhov, L., Mazzocco, M.: Isomonodromic deformations and twisted Yangians arising in Teichmüller theory. Adv. Math. 226(6), 4731–4775 (2011). arXiv:0909.5350
Chari, V., Pressley, A.: A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994. xvi+651 pp
Delius, G.W., MacKay, N.J., Short, N.J.: Boundary remnant of Yangian symmetry and the structure of rational reflection matrices. Phys. Lett. B 522(3–4), 335–344 (2001). arXiv:hep-th/0109115
Drinfeld, V.G.: Hopf algebras and the quantum Yang–Baxter equation. Soviet Math. Dokl. 32, 254–258 (1985)
Drinfeld, V.G.: Quantum groups, Proceedings of the International Congress of Mathematicians, Berkeley, 1986, Gleason, A.M. (ed), pp. 798–820, Am. Math. Soc., Providence, RI
Drinfeld, V.G.: A new realization of Yangians and of quantum affine algebras, (Russian) Dokl. Akad. Nauk SSSR 296(1), 13–17 (1987); translation in Soviet Math. Dokl. 36(2), 212–216 (1988)
Etingof, P., Golberg, O., Hensel, S., Liu, T., Schwendner, A., Vaintrob, D., Yudovina, E.: Introduction to Representation Theory with historical interludes by Slava Gerovitch, Student Mathematical Library, 59 American Mathematical Society, Providence, RI, viii+228 pp
Gow, L., Molev, A.: Representations of twisted q-Yangians. Selecta Math. (N.S.) 16(3), 439–499 (2010)
Guay, N., Regelskis, V.: Twisted Yangians for symmetric pairs of types B, C, D. Math. Z. 284(1–2), 131–166 (2016). arXiv:1407.5247
Guay, N., Regelskis, V., Wendlandt, C.: Twisted Yangians of small rank. J. Math. Phys. 57, 041703 (2016). arXiv:1602.01418
Khoroshkin, S., Nazarov, M.: Yangians and Mickelsson algebras. I. Transform. Groups 11(4), 625–658 (2006). arXiv:math/0606265
Khoroshkin, S., Nazarov, M.: Yangians and Mickelsson algebras. II. Mosc. Math. J. 6(3), 477–504, 587 (2006). arXiv:math/0606272
Khoroshkin, S., Nazarov, M.: Twisted Yangians and Mickelsson algebras. I. Selecta Math. (N.S.) 13(1), 69–136 (2007). arXiv:math/0703651
Khoroshkin, S., Nazarov, M.: Twisted Yangians and Mickelsson algebras. II Algebra i Analiz 21(1), 153–228 (2009); translation in St. Petersburg Math. J. 21(1), 111–161 (2010). arXiv:0801.0519
Khoroshkin, S., Nazarov, M.: Mickelsson algebras and representations of Yangians. Trans. Am. Math. Soc. 364(3), 1293–1367 (2012). arXiv:0912.1101
Khoroshkin, S., Nazarov, M., Papi, P.: Irreducible representations of Yangians. J. Algebra 346, 189–226 (2011). arXiv:1105.5777
Kamnitzer, J., Webster, B., Weekes, A., Yacobi, O.: Yangians and quantizations of slices in the affine Grassmannian. Algebra Number Theory 8(4), 857–893 (2014). arXiv:1209.0349
MacKay, N.J.: Introduction to Yangian symmetry in integrable field theory, Internat. J. Mod. Phys. A 20(30), 7189–7217 (2005). arXiv:hep-th/0409183
MacKay, N.J., Regelskis, V.: Yangian symmetry of the \(Y = 0\) maximal giant graviton. J. High Energy Phys. 76(12), 17 (2010). arXiv:1010.3761
MacKay, N.J., Regelskis, V.: Achiral boundaries and the twisted Yangian of the D5-brane. J. High Energy Phys. 2011(8), 19–22 (2011). arXiv:1105.4128
MacKay, N.J., Short, B.: Boundary scattering in the principal chiral model, Workshop on Integrable Theories, Solitons and Duality, 6 pp., J. High Energy Phys. Conf. Proc., Proc. Sci. (SISSA), Trieste, 2002. arXiv:hep-th/0107256
Molev, A.: Representations of twisted Yangians. Lett. Math. Phys. 26, 211–218 (1992)
Molev, A.: Finite-dimensional irreducible representations of twisted Yangians. J. Math. Phys. 39(10), 5559–5600 (1998). arXiv:q-alg/9711022
Molev, A.: Irreducibility criterion for tensor products of Yangian evaluation modules. Duke Math. J. 112(2), 307–341 (2002). arXiv:math/0009183
Molev, A.: Skew representations of twisted Yangians. Selecta Math. (N.S.) 12(1), 1–38 (2006). arXiv:math/0408303
Molev, A.: Yangians and Classical Lie Algebras, Mathematical Surveys and Monographs 143, American Mathematical Society, Providence, RI, pp. xviii+400 (2007)
Molev, A., Nazarov, M., Olshanskii, G.: Yangians and classical Lie algebras. Russ. Math. Surv. 51(2), 205–282 (1996). arXiv:hep-th/9409025
Molev, A., Olshanskii, G.: Centralizer construction for twisted Yangians. Selecta Math. (N.S.) 6(3), 269–317 (2000)
Molev, A., Ragoucy, E.: Representations of reflection algebras. Rev. Math. Phys. 14(3), 317–342 (2002). arXiv:math/0107213
Molev, A., Ragoucy, E., Sorba, P.: Coideal subalgebras in quantum affine algebras. Rev. Math. Phys. 15(8), 789–822 (2003). arXiv:math/0208140
Nazarov, M.: Representations of twisted Yangians associated with skew Young diagrams. Selecta Math. (N.S.) 10(1), 71–129 (2004)
Nazarov, M., Tarasov, V.: On irreducibility of tensor products of Yangian modules. Internat. Math. Res. Notices 3, 125–150 (1998). arXiv:q-alg/9712004
Nazarov, M., Tarasov, V.: On irreducibility of tensor products of Yangian modules associated with skew Young diagrams. Duke Math. J. 112(2), 343–378 (2002). arXiv:math/0012039
Olshanskii, G.: Twisted Yangians and infinite-dimensional classical Lie algebras. Quantum groups (Leningrad, 1990), pp. 104–119, Lecture Notes in Math. vol. 1510, Springer, Berlin (1992)
Rimanyi, R., Tarasov, V., Varchenko, A.: Cohomology classes of conormal bundles of Schubert varieties and Yangian weight functions. Math. Z. 277(3–4), 1085–1104 (2014). arXiv:1204.4961
Sklyanin, E.: Boundary conditions for integrable quantum systems. J. Phys. A 21(10), 2375–2389 (1988)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Guay, N., Regelskis, V. & Wendlandt, C. Representations of twisted Yangians of types B, C, D: I. Sel. Math. New Ser. 23, 2071–2156 (2017). https://doi.org/10.1007/s00029-017-0306-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00029-017-0306-x