Skip to main content
Log in

Representations of twisted Yangians of types B, C, D: I

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We initiate a theory of highest weight representations for twisted Yangians of types B, C, D and we classify the finite-dimensional irreducible representations of twisted Yangians associated to symmetric pairs of types CI, DIII and BCD0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnaudon, D., Avan, J., Crampé, N., Frappat, L., Ragoucy, E.: \(R\)-matrix presentation for super-Yangians \(Y({\rm osp(m|2n}))\). J. Math. Phys. 44(1), 302–308 (2003). arXiv:math/0111325

    Article  MATH  MathSciNet  Google Scholar 

  2. Arnaudon, D., Molev, A., Ragoucy, E.: On the \(R\)-matrix realization of Yangians and their representations. Ann. Henri Poincaré 7(7–8), 1269–1325 (2006). arXiv:math/0511481

    Article  MATH  MathSciNet  Google Scholar 

  3. Bernard, D.: Hidden Yangians in 2 D massive current algebras. Commun. Math. Phys. 137(1), 191–208 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bernard, D.: An introduction to Yangian symmetries. Yang–Baxter equations in Paris (1992). Int. J. Mod. Phys. B 7(20–21), 3517–3530 (1993). arXiv:hep-th/9211133

    Article  MATH  Google Scholar 

  5. Cherednik, I.: Factorizing particles on a half line, and root systems. Teoret. Mat. Fiz. 61(1), 35–44 (1984)

    MATH  MathSciNet  Google Scholar 

  6. Chekhov, L., Mazzocco, M.: Isomonodromic deformations and twisted Yangians arising in Teichmüller theory. Adv. Math. 226(6), 4731–4775 (2011). arXiv:0909.5350

    Article  MATH  MathSciNet  Google Scholar 

  7. Chari, V., Pressley, A.: A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994. xvi+651 pp

  8. Delius, G.W., MacKay, N.J., Short, N.J.: Boundary remnant of Yangian symmetry and the structure of rational reflection matrices. Phys. Lett. B 522(3–4), 335–344 (2001). arXiv:hep-th/0109115

    Article  MATH  MathSciNet  Google Scholar 

  9. Drinfeld, V.G.: Hopf algebras and the quantum Yang–Baxter equation. Soviet Math. Dokl. 32, 254–258 (1985)

    Google Scholar 

  10. Drinfeld, V.G.: Quantum groups, Proceedings of the International Congress of Mathematicians, Berkeley, 1986, Gleason, A.M. (ed), pp. 798–820, Am. Math. Soc., Providence, RI

  11. Drinfeld, V.G.: A new realization of Yangians and of quantum affine algebras, (Russian) Dokl. Akad. Nauk SSSR 296(1), 13–17 (1987); translation in Soviet Math. Dokl. 36(2), 212–216 (1988)

  12. Etingof, P., Golberg, O., Hensel, S., Liu, T., Schwendner, A., Vaintrob, D., Yudovina, E.: Introduction to Representation Theory with historical interludes by Slava Gerovitch, Student Mathematical Library, 59 American Mathematical Society, Providence, RI, viii+228 pp

  13. Gow, L., Molev, A.: Representations of twisted q-Yangians. Selecta Math. (N.S.) 16(3), 439–499 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Guay, N., Regelskis, V.: Twisted Yangians for symmetric pairs of types B, C, D. Math. Z. 284(1–2), 131–166 (2016). arXiv:1407.5247

    Article  MATH  MathSciNet  Google Scholar 

  15. Guay, N., Regelskis, V., Wendlandt, C.: Twisted Yangians of small rank. J. Math. Phys. 57, 041703 (2016). arXiv:1602.01418

    Article  MATH  MathSciNet  Google Scholar 

  16. Khoroshkin, S., Nazarov, M.: Yangians and Mickelsson algebras. I. Transform. Groups 11(4), 625–658 (2006). arXiv:math/0606265

    Article  MATH  MathSciNet  Google Scholar 

  17. Khoroshkin, S., Nazarov, M.: Yangians and Mickelsson algebras. II. Mosc. Math. J. 6(3), 477–504, 587 (2006). arXiv:math/0606272

    MATH  MathSciNet  Google Scholar 

  18. Khoroshkin, S., Nazarov, M.: Twisted Yangians and Mickelsson algebras. I. Selecta Math. (N.S.) 13(1), 69–136 (2007). arXiv:math/0703651

    Article  MATH  MathSciNet  Google Scholar 

  19. Khoroshkin, S., Nazarov, M.: Twisted Yangians and Mickelsson algebras. II Algebra i Analiz 21(1), 153–228 (2009); translation in St. Petersburg Math. J. 21(1), 111–161 (2010). arXiv:0801.0519

  20. Khoroshkin, S., Nazarov, M.: Mickelsson algebras and representations of Yangians. Trans. Am. Math. Soc. 364(3), 1293–1367 (2012). arXiv:0912.1101

    Article  MATH  MathSciNet  Google Scholar 

  21. Khoroshkin, S., Nazarov, M., Papi, P.: Irreducible representations of Yangians. J. Algebra 346, 189–226 (2011). arXiv:1105.5777

    Article  MATH  MathSciNet  Google Scholar 

  22. Kamnitzer, J., Webster, B., Weekes, A., Yacobi, O.: Yangians and quantizations of slices in the affine Grassmannian. Algebra Number Theory 8(4), 857–893 (2014). arXiv:1209.0349

    Article  MATH  MathSciNet  Google Scholar 

  23. MacKay, N.J.: Introduction to Yangian symmetry in integrable field theory, Internat. J. Mod. Phys. A 20(30), 7189–7217 (2005). arXiv:hep-th/0409183

    Article  MATH  Google Scholar 

  24. MacKay, N.J., Regelskis, V.: Yangian symmetry of the \(Y = 0\) maximal giant graviton. J. High Energy Phys. 76(12), 17 (2010). arXiv:1010.3761

    MATH  MathSciNet  Google Scholar 

  25. MacKay, N.J., Regelskis, V.: Achiral boundaries and the twisted Yangian of the D5-brane. J. High Energy Phys. 2011(8), 19–22 (2011). arXiv:1105.4128

    Article  MATH  MathSciNet  Google Scholar 

  26. MacKay, N.J., Short, B.: Boundary scattering in the principal chiral model, Workshop on Integrable Theories, Solitons and Duality, 6 pp., J. High Energy Phys. Conf. Proc., Proc. Sci. (SISSA), Trieste, 2002. arXiv:hep-th/0107256

  27. Molev, A.: Representations of twisted Yangians. Lett. Math. Phys. 26, 211–218 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Molev, A.: Finite-dimensional irreducible representations of twisted Yangians. J. Math. Phys. 39(10), 5559–5600 (1998). arXiv:q-alg/9711022

    Article  MATH  MathSciNet  Google Scholar 

  29. Molev, A.: Irreducibility criterion for tensor products of Yangian evaluation modules. Duke Math. J. 112(2), 307–341 (2002). arXiv:math/0009183

    Article  MATH  MathSciNet  Google Scholar 

  30. Molev, A.: Skew representations of twisted Yangians. Selecta Math. (N.S.) 12(1), 1–38 (2006). arXiv:math/0408303

    Article  MATH  MathSciNet  Google Scholar 

  31. Molev, A.: Yangians and Classical Lie Algebras, Mathematical Surveys and Monographs 143, American Mathematical Society, Providence, RI, pp. xviii+400 (2007)

  32. Molev, A., Nazarov, M., Olshanskii, G.: Yangians and classical Lie algebras. Russ. Math. Surv. 51(2), 205–282 (1996). arXiv:hep-th/9409025

    Article  MATH  MathSciNet  Google Scholar 

  33. Molev, A., Olshanskii, G.: Centralizer construction for twisted Yangians. Selecta Math. (N.S.) 6(3), 269–317 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  34. Molev, A., Ragoucy, E.: Representations of reflection algebras. Rev. Math. Phys. 14(3), 317–342 (2002). arXiv:math/0107213

    Article  MATH  MathSciNet  Google Scholar 

  35. Molev, A., Ragoucy, E., Sorba, P.: Coideal subalgebras in quantum affine algebras. Rev. Math. Phys. 15(8), 789–822 (2003). arXiv:math/0208140

    Article  MATH  MathSciNet  Google Scholar 

  36. Nazarov, M.: Representations of twisted Yangians associated with skew Young diagrams. Selecta Math. (N.S.) 10(1), 71–129 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  37. Nazarov, M., Tarasov, V.: On irreducibility of tensor products of Yangian modules. Internat. Math. Res. Notices 3, 125–150 (1998). arXiv:q-alg/9712004

  38. Nazarov, M., Tarasov, V.: On irreducibility of tensor products of Yangian modules associated with skew Young diagrams. Duke Math. J. 112(2), 343–378 (2002). arXiv:math/0012039

    Article  MATH  MathSciNet  Google Scholar 

  39. Olshanskii, G.: Twisted Yangians and infinite-dimensional classical Lie algebras. Quantum groups (Leningrad, 1990), pp. 104–119, Lecture Notes in Math. vol. 1510, Springer, Berlin (1992)

  40. Rimanyi, R., Tarasov, V., Varchenko, A.: Cohomology classes of conormal bundles of Schubert varieties and Yangian weight functions. Math. Z. 277(3–4), 1085–1104 (2014). arXiv:1204.4961

    Article  MATH  MathSciNet  Google Scholar 

  41. Sklyanin, E.: Boundary conditions for integrable quantum systems. J. Phys. A 21(10), 2375–2389 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Guay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guay, N., Regelskis, V. & Wendlandt, C. Representations of twisted Yangians of types B, C, D: I. Sel. Math. New Ser. 23, 2071–2156 (2017). https://doi.org/10.1007/s00029-017-0306-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-017-0306-x

Mathematics Subject Classification

Navigation